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A continuum model based on the critical-state theory of soil mechanics is used to 
generate stress, density, and velocity profiles, and to compute discharge rates for the 
flow of granular material in a mass flow bunker. The bin-hopper transition region is 
idealized as a shock across which all the variables change discontinuously. 
Comparison with the work of Michalowski (1987) shows that his experimentally 
determined rupture layer lies between his prediction and that of the present theory. 
However, it resembles the former more closely. The conventional condition involving 
a traction-free surface at the hopper exit is abandoned in favour of an exit shock 
below which the material falls vertically with zero frictional stress. The basic 
equations, which are not classifiable under any of the standard types, require 
excessive computational time. This problem is alleviated by the introduction of the 
Mohr-Coulomb approximation (MCA). The stress, density, and velocity profiles 
obtained by integration of the MCA converge to asymptotic fields on moving down 
the hopper. Expressions for these fields are derived by a perturbation method. 
Computational difficulties are encountered for bunkers with wall angles Ow 2 15"; 
these are overcome by altering the initial conditions. Predicted discharge rates lie 
significantly below the measured values of Nguyen et al. (1980), ranging from 38 % 
a t  8, = 15" to 59% at 13, = 32". The poor prediction appears to be largely due to the 
exit condition used here. Paradoxically, incompressible discharge rates lie closer to 
the measured values. An approximate semi-analytical expression for the discharge 
rate is obtained, which predicts values within 9 YO of the exact (numerical) ones in the 
compressible case, and 11 % in the incompressible case. The approximate analysis 
also suggests that  inclusion of density variation decreases the discharge rate. This is 
borne out by the exact (numerical) results - for the parameter values investigated, 
the compressible discharge rate is about 10 YO lower than the incompressible value. 
A preliminary comparison of the predicted density profiles with the measurements of 
Fickie et al. (1989) shows that the material within the hopper dilates more strongly 
than predicted. Surprisingly, just below the exit slot, there is good agreement 
between theory and experiment. 

1. Introduction 
The handling and storage of granular materials such as coal, food grains, plastic 

beads, and catalyst pellets are operations which are commonly encountered in 
various industries (Jenike 1964a, p. 1 ; Marchello 1976; Shamlou 1988, p. 1) .  Though 
considerable industrial experience has accumulated over the years, the theoretical 
description of granular flow is still in its infancy. Here we discuss some theoretical 
aspects of one problem, namely the flow of granular materials through a bunker. 

t Present address : Chemical Engineering Division, National Chemical Laboratory, Pune 
411 088, India. 
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FIGURE 1 .  Coordinate systems used for a mass-flow bunker. Cartesian coordinates (r, y) in the bin 
section and polar coordinates ( r ,  0) in the hopper section. r1 = major principal stress, g1 = minor 
principal stress. 

A bunker consists of a box-like ‘bin’ section, mounted above a ‘hopper’ section, 
as shown in figure 1. The bunker is filled from above and the material is allowed to 
discharge through a slot a t  the bottom. It is desired to predict the rate of discharge 
of material from the bunker, and also the forces acting on its walls. 

With free-flowing materials, such as coarse sand and glass beads, two regimes of 
flow are observed, depending on the slope of the hopper walls, and the amount of 
material in the bunker (Nguyen, Brennen & Sabersky 1980). These are called ‘mass 
flow ’ and ‘funnel flow ’, respectively. In  mass flow, the motion of all the material in 
the bunker is fairly uniform, whereas in funnel flow, there is a central core of rapidly 
moving material, surrounded by ‘dead ’ regions adjacent to the bunker walls, where 
the material is either stagnant or moves very slowly. The mass-flow regime appears 
to be less complex, and hence will be the focus of this work. 

The evolution of flow patterns in mass-flow bunkers has been the subject of a 
number of experimental studies, such as those of Blair-Fish & Bransby (1973), Lee, 
Cowin & Templeton (1974), and Michalowski (1984, 1987). Some of the relevant 
observations are briefly summarized below. 

When the exit slot is opened, thin regions called ‘rupture surfaces’ form, across 
which the density and velocity change sharply. These surfaces originate from the 
edges of the discharge slot, and gradually spread upwards. During the initial stages 
of flow, the hopper is criss-crossed by a pattern of rupture surfaces, which are seen 
from radiographs to be thin bands of dilated or loosely packed material sandwiched 
between blocks of denser material. This pattern is confined to the hopper section ; for 
some reason, i t  does not propagate far into the bin section of the bunker. Thus 
rupture surfaces are trapped at the bin-hopper transition. At the moment, there is 
no convincing physical explanation for this phenomenon. 
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FIGURE 2. Radiograph of sand flowing through a bunker (0 ,  = 30'). Reproduced from Lee et al. 
(1974) with permission from John Wiley and Sons. Dark regions indicate material having a higher 
bulk density. The streaks are trajectories of lead shot, used as marker particles. 

In the advanced stages of flow, the rupture surfaces in the lower part of the hopper 
fade out, leaving a single surface separating dense material in the bin from dilated 
material in the hopper. This may be seen from the radiograph of Lee et al. (1974) 
(figure 2) ,  where dark regions indicate material having a higher bulk density. The 
density of the material in the bin appears to remain close to  its initial (poured) value; 
however, Michalowski (1987) has observed a mild dilation for initially dense 
materials. 

The streaks in figure 2 are trajectories of lead shot, which were used as marker 
particles. Based on this and other evidence (Nedderman & Laohakul 1980), we have 
the following picture of the velocity field in a bunker. Particles moves vertically 
downwards in the bin with constant speed, except for narrow shear zones adjacent 
to  the bin walls. In  the hopper section, they move radially towards the exit slot, a t  
least when the hopper walls are steep. 

So far, we have discussed the kinematics of flow through bunkers. A few remarks 
about wall stresses are now in order. The experiments of Blair-Fish & Bransby 
(1973), Rao & Venkateswarlu (1974), Clague (quoted in Blight 1986), Manjunath 
(1988), and others show that the normal stress on the wall increases on moving 
downwards from the upper surface of the fill. If the height of fill in the bin section 
is large compared to the lateral diniensions of the bunker, the normal stress tends to 
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attain a constant value as the depth increases. It will be seen later that the existence 
of an asymptotic stress field in the bin is central to our formulation of boundary 
conditions for a steady-state problem. 

The normal stress shows a sharp increase or peak a t  the bin-hopper transition, and 
then begins to decrease along the hopper wall. It is believed that the peak in strcss 
occurs because the orientation of the major principal stress switches from an ‘active ’ 
or nearly vertical state in the bin, to a ‘passive’ or nearly horizontal state in the 
hopper (Jenike & Johanson 1968; Bransby & Blair-Fish 1974). ,Jenike & Johanson 
(1968) attribute this change to  the dilation of the material as it flows through the 
hopper, causing a horizontal compression; this in turn tends to increase the 
magnitude of the horizontal normal stress relative to that of the vertical normal 
stress. 

It is conjectured that when the exit slot is opened, a ‘switch wave ’ which separates 
active and passive states travels up the hopper, and gets trapped a t  thc bin-hopper 
transition. The experiments of Handley & Perry (1967) and Perry & Handlcy (1967) 
support the notion of an active state in the bin and a passive state in the hopper. 
However, there is no evidence of a travelling switch wave in the literature. 
Simultaneous observations of wall stresses and flow patterns (Blair-Fish & Bransby 
1973) suggests that the occurrence of a stress peak a t  the transition coincides with 
the formation of rupture surfaces in this region, a t  least during the initial stage of 
flow. In  the advanced stage of flow, Blair-Fish & Bransby (1973) observed oscillatory 
wall stresses in the transition region. They conjectured that the oscillations may be 
related to the intermittent growth and decay of rupture surfaces. However, in the 
absence of continuous monitoring of the velocity and density fields, it is difficult to 
draw a firm conclusion. 

The above discussion suggests that  the bunker problem may be viewed from two 
angles: ( a )  the initial stage of flow, and ( b )  the advanced stage of flow. The former 
involves the formation and growth of rupture layers, and the initiation of flow. So 
far, no attempts have been made to model this bchaviour. As it  appears to be a 
formidable problem, we shall examine only the advanccd stage of flow, where one can 
consider a single, fully developed rupture laycr separating dense material in the bin 
from loose material in the hopper. Even with this simplification, the use of a steady- 
state analysis is suspect if wall stresses usually oscillate, in the manner reported by 
Blair-Fish & Bransby (1973). However, it is intuitively expected that some of the 
gross features of the stress and velocity fields will be revealed by a steady-state 
approach. This is in keeping with Jenike’s remark that ‘in mass flow hoppers, 
oscillations are slight’ (Jenike 1987). Further, such models have not yet been 
carefully examined; indeed, there do not appear to have been any attempts to 
simultaneously predict the stress, density, and velocity fields in a mass-flow bunker. 

With the above considerations in mind, we shall confine attention to a steady-state 
analysis based on a continuum model. Though the bulk of the literature on granular 
flow is concerned with continuum models, discrete models have also begun to appear 
(Campbell & Brennen 1985). Some of the other assumptions used here are discussed 
below; the rest will be indicated later. 

(i)  The material will be regarded as cohesionlcss, i.e. one that cannot support 
tensile normal stresses. Materials such as coarsc sand, seeds, and glass beads fall into 
this category, whereas fine powders such as cement and cracking catalyst usually 
exhibit some amount of cohesion. Though the latter are industrially important 
materials, we shall confine attention to  cohesionless materials as the theory is simpler 
and contains fewer parameters. 
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(ii) Assuming that the distance between the front and back faces of the bunker is 
large compared with the other dimensions, the flow may be regarded as being parallel 
to these faces. Further, the variation in all the field variables perpendicular to the 
plane of flow may be considered negligible. The assumption of plane flow greatly 
simplifies the form of the constitutive relations and reduces the number of dependent 
variables. To the best of our knowledge, there have been no attempts to solve truly 
three-dimensional granular-flow problems. However, Schaeffer & Pitman ( 1988) have 
recently examined some aspects of such problems. 

(iii) Though the bulk of the literature on bunker flow is concerned with 
incompressible analyses (Savage 1965; Davidson & Nedderman 1973 ; Brennen & 
Pearce 1978; Kaza & Jackson 1982a, b ;  Meric & Tabarrok 1982), the effect of density 
variation will be included in our work for the following reasons: ( a )  as discussed 
earlier, the density of the material in the bin section is likely to be different from that 
in the hopper section, and ( b )  density measurements in hoppers and bins (Bosley, 
Schofield & Shook 1969; Blair-Fish & Bransby 1973; Van Zuilichem, Van Egmond 
& de Swart 1974; Lee et al. 1974; Tiiziin & Nedderman 1982; Michalowski 1984, 
1987; Fickie, Mehrabi & Jackson 1989) show that there is a marked dilation in the 
vicinity of the exit slot. One other reason is discussed below. 

Though a frictional theory will be used here, it appears that momentum transfer 
by collisions between particles may also be important in certain parts of the flow 
field. It is felt intuitively that frictional effects are important in slow flows a t  high 
densities, whereas collisional effects are important in rapid flows at  lower densities 
(Sayed & Savage 1983; Savage et al. 1983; Johnson & Jackson 1987). Hence a 
comprehensive frictional-collisional theory must allow for density variation. The 
present work may therefore be regarded as a precursor to the eventual inclusion of 
collisional effects. 

It is the purpose of this work to predict the stress, density, and velocity fields in 
a bunker, and to assess the importance of compressibility effects. To this end, we now 
turn to the basic equations. 

2. Basic equations 
2.1. Balance laws 

Using polar coordinates with origin a t  the vertex of the hopper (figure l ) ,  and 
confining attention to plane flow, the balance laws for steady flow take the form 

Continuity 

i a  l a  
- - (rpv,) +- - (pv,) = 0, 
r ar r ae 

Momentum balance (r-component) 

Momentum balance (8-component) 

Here p = pSes is the bulk density, where ps is the density of the solid, which is 
assumed to be constant and E ,  is the volume fraction occupied by the solid; arr, ar,, 
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and vgg are the components of the stress tensor, which is defined in the compressive 
sense; v, and vg are the radial and circumferential components of velocity, 
respectively ; and g is the acceleration due to gravity. 

2.2. Constitutive models 
At present, there appear to be three broad types of constitutive models for describing 
granular how in various geometries’(Tiizun et al. 1982; Savage et al. 1983; Jackson 
1986) : 

( a )  kinematic models ; 
( b )  ‘;Ate independent’ or frictional models bascd on plasticity theory and soil 

mechadics ; 
( c )  ‘rate dependent ’ or collisional models bascd on the kinetic theory of gases. 

Before ‘discussing some features of these models, we note that nonc of them is wholly 
satisfactbry or even superior to the others in all respects. Perhaps this reflects the 
present level of development of the theory. 

Kinematic models are ‘incomplete’ in the sense that they provide no information 
about stresses. Nevertheless, they have ‘been reasonably successful in predicting 
velocity profiles in the ‘converging-flow ’ zone of the flat-bottomed bins (Tuzun & 
Nedderman 1979). They will not be pursued here, as it is not clear how they should 
be modified to account for density variation, and to predict the stress field. 

Frictional models have been in use for over two decades. The results of these 
studies show that the models can predict some, but not all, of the phenomena 
observed when granular materials flow through hoppers and bunkers (see for 
example, Blair-Fish & Bransby 1973; Spink & Nedderman 1978; Meric & Tabarrok 
1982; Bridgwater & Scott 1983; Jackson 1983; Michalowski 1984; Nedderman 1988). 

Apart from the pioneering work of Bagnold (1954), collisional models have been 
explored largely from the 1970’s onwards. They can predict some features of plane 
shear between parallel plates, and of flow down inclined planes (Ackermann & Shen 
1982 ; Savage 1983). More recently, hybrid frictional-collisional models have been 
developed and applied to these problems, with encouraging results (Sayed & Savage 
1983 ; Johnson & Jackson 1987). Both the collisional and frictional-collisional 
equations are formidable, and have yet to be used for two-dimensional problems such 
as bunker Aow. 

In view of the above discussion, attention will be confined to frictional equations. 
For an account of the physical motivatidn behind these equations, sce for example 
Jenike 1964a), Schofield & Wroth (1968); Atkinson & Bransby (1978), and Jackson 

used more frequently, the present status is such that there is still ample scope for a 
detaiJed examination of certain aspects. 

(1983). L ven though they are older than their collisional counterparts, and have been 

1 

2.3. Frictional constitutive equations 
Frictional equations are composed of two elements, namely yield conditions and flow 
rules. It is assumed that the flowing material satisfies a yield condition of the form 
(*Bylor 1978) 

where Fo is a scalar function of the stress tensor a and a ‘hardening parameter ’ y .  The 
literature contains several choices for y ,  such as the plastic work (Hill 1950, p. 25), 
the plastic volumetric strain, or equivalently, the density (Roscoe, Schofield & 
F r o t h  1958; Roscoe & Burland 1968; Zienkiewicz, Humpheson & Lewis 1977; 
Taylor 1978), and the total plastic strain (Hill 1950, p. 30; Desai & Siriwardane 1984, 

Fo(a,p) = 0, (4) 



Flow of granular materials through a bunker 27 

p. 379). Here we set ,u = p, the bulk density, in keeping with the critical-state theory 
of soils (Schofield & Wroth 1968; Jackson 1983). Assuming that the material is 
isotropic, (4) may be rewritten as 

(5 )  Fl(U13 u.2, u3, P )  = 0, 

where Fl is a symmetric function of the principal stresses ul, u2 and us (Hill 1950, 
pp. 15, 16). 

The yield condition does not directly give any information about the kinematics 
of motion a t  yield. This is provided by the flow rule. The plastic potential flow rule 
assumes that the rate-of-deformation tensor depends only on the stress tensor and a 
hardening parameter, such as the bulk density. Under this assumption, it can be 
shown that the principal axes of stress and rate-of-deformation or strain-rate tensors 
coincide (Hunter 1983, pp. 136, 137). This is called the coaxiality condition (Mroz & 
Szymanski 1978; Spencer 1982; Jackson 1983). 

In  terms of principal values, the plastic potential flow rule for an isotropic material 
is generally assumed to be given by (Drucker & Prager 1952; Mroz & Szymanski 
1978; Jackson 1983; Hunter 1983, p. 481) 

c1 = A-; aQi i = 1 ,2 ,3 ,  a r i  
where clr c2, and c3 are the principal compressive strain rates, i.e. the principal values 
of the rate-of-deformation tensor, defined in the compressive sense, Ql(ul, u2, u3, p )  is 
a scalar function called the plastic potential, and A is a scalar factor of 
proportionality. Since A has bo be determined as a part of the solution, (6) constitutes 
only two independent relations between the principal strain rates, the principal 
stresses, and the density. For a discussion of other types of flow rules, see Mroz & 
Szymanski (1978) and Spencer (1982). 

For plane flow, i t  is easy to  show that one of the principal axes of the rate-of- 
deformation tensor must be perpendicular to the plane of flow. Consequently, the 
other two principal axes, say the c1 and c2 axes, must lie in the plane of flow and, on 
account of coaxiality, two of the principal stress axes, say the ul, and u2 axes, are 
similarly disposed. Since c3 = 0 for plane flow, (6) implies that 

= 0. aQ, 
3u3 

(7) 

Using (7 )  to eliminate u3, (5) may be rewritten as 

PdUl ,  u2,p)  = 0. (8) 

An illustration of this procedure is given in Prakash & Rao (1988). 
It is convenient to  express the principal stresses in terms of the invariants 

u = i(u1+u2); 7 = i(u1-u2); u1 2 u2, (9) 

which are called the mean stress and the deviatoric stress, respectively. In  terms of 
u and 7 ,  the yield condition for plane flows (8) takes the form 

(10) f ( 7 , r , p )  = E’,(u+7,u-7,p) = 0. 

Similarly, the flow rule (6) may be rewritten as 

2 FL.M 225 
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where Q2(ul, u2 ,p )  is a ‘two-dimensional ’ plastic potential which is obtained from the 
‘three-dimensional’ plastic potential Ql(ul, u2, a3, p )  by using (7) to eliminate u3. 
Introducing an alternative plastic potential 4(7,u, p ) ,  defined by 

4(7, u; p )  Q2(g+r, a-7, P )  (12) 

and the angle of dilation v (Roscoe 1970), defined by 

the flow rule for plane flows (11) may be rewritten as 

In  polar coordinates, the coaxiality condition takes the form (Jackson 1983; Prakash 
& Rao 1988) 

where y is the angle that the major principal stress axis makes with the 
circumferential direction (figure 1). Similarly, (13) may be rewritten as 

Equation (16) is the flow rule for plane flows, with sin v given by (14). 
The specific forms used here for the yield condition and the plastic potential will 

now be described. The choice of forms is guided to some extent by the critical-state 
theory of soils (Roscoe et al. 1958; Schofield & Wroth 1968; Atkinson & Bransby 
1978; Jackson 1983). Central to this theory is the concept of ‘critical’ states, which 
permit isochoric deformation a t  constant values of a and r. The value of the mean 
stress a at a critical state, henceforth denoted by uc, is found to be a function of the 
density p. Noting that the yield condition (10) may be represented by yield loci or 
contours of constant p in the (u, r)-plane, and assuming that these loci are similar in 
shape (see for example Roscoe et aE. 1958), (10) may be rewritten as 

The yield condition (17) maps as a single curve in the (a,7/ac)-plane, with the 
critical state given by the point, a = 1, 7/vc = h(1) .  The segment of the yield locus 
with a < 1 is c-lled the dilation branch, since it is found that for stress states in this 
segment, deformation is accompanied by a decrease in density. Similarly, the 
segment with a > 1 is called the compaction branch, since deformation leads to an 
increase in density. 

The functions a,@) and h(a) are taken to be 
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or equivalently 

and h(a)  = ~inq5[na-n,(ol)~/"l]; n, = n-1, ( 2 0 )  

where pa is the atmospheric pressure, used as a convenient non-dimensionalizing 
parameter (since wall stress in laboratory-scale bunkers rarely exceeds pa in 
magnitude, Bridgwater & Scott 1983). The parameters 4, A,, n and the angle of 
internal friction q5 are material parameters. Equation (18) is taken from soil 
mechanics literature (see for example, Atkinson & Rransby 1978, pp. 190, 191). while 
some justification for (20) is given in our earlier work (Prakash & Rao 1988). 

Turning to the choice of the plastic potential q, we note that (14) represents an 
'associated' flow rule (Naylor 1978) if 

q =f1 (21) 

where f is the yield condition. Otherwise it represents a 'non-associated' flow rule, 
The following points may be noted regarding these two types of flow rules: ( a )  data 
on the stress-strain behaviour of clays such as Kaolin and Weald clay (Roscoe & 
Burland 1968) support the use of the associated flow rule for the compaction branch 
of the yield locus, ( b )  the behaviour of dense specimens of sand (Lade & Duncan 1975 ; 
Bolton 1986) suggests the use of a non-associated flow rule for the dilation branch, 
(c) the dilatancy of certain rocks can be modclled using the associated flow rule for 
the dilation branch (Gerogiannopoulos & Brown 1978), and (a!) by definition, the rate 
of dilation must vanish a t  a critical state, regardless of the choice of flow rules. Thus 
solutions obtained with associated and non-associated flow rules are likely to be close 
together in the vicinity of critical states. 

The above discussion suggests that  the choice of plastic potentials depends on the 
nature of the material, and, for a given material, on whether it is compacting or 
dilating. To simplify the analysis, and to avoid switching frequently between the two 
typcs of flow rules, only one will be used for both the branches. At present, very little 
is known about the nature of solutions to bunker problems, under either type of flow 
rulc. 

We start with an associated flow rule, given by (14), (17)-(21), and later modify it 
because of computational difficulties. As discussed later, the modified equations are 
effectively equivalent to those based on a non-associated flow rule. 

2.4. Equations in dimensionless form 

It is convenient to express the stress components in terms of the Sokolovskii 
variables (T, T and y :  

ur,. = U - T C O S ~ ~ ;  (T,~ = -7sin2-y; uoo = u+rcos2y,  (22) 

where (T and T are defined by (9), and y is the orientation of the major principal stress 
axis relative to  the circumferential direction. 

Introducing dimensionless variables 

= 23.- 
Pmax gL ' 

7 
7* = ~ 

Pmax gL ' 

where L is the half-width of the bin (figure l ) ,  pmax = ps es, max, and es, max is the volume 
2.2 
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fraction of the solid corresponding to close packing of uniform spheres ( = 0.74 ; 
Brown & Richards 1970, p. 17), the basic equations (1)-(3) and (15), (16) may be 
written as follows 1 

Continuity (23) 

Momentum balance (r-component) 

av* '*a'* (w;)z] i a [ p* '*'+BL-- i a  +- - r*(a* -7* cos 2y) -- -[7* sin 2y] ] r*ae [ r ar* r* ae r* r* ar* 

U* + 7* cos 27 
- +p*cosB = 0 ;  (24) 

r* 
Momentum balance (B-component) 

i a  
r* a0 

+--[[a*+~*cos2y]-p*sinO = 0 ;  (25) 

7* 
Yield condition f*=m- sin q5[na-n,(~x)~/~l] = 0, 

where 
0- U* 

(29) 

Associated flow rule sinv = nsinq5[i-(a)'/nl]. (31) 

2.5. Structure of the basic equations 

The basic equations constitute a set of five first-order, quasi-linear partial differential 
equations in the dependent variables u*, y ,  p* ,  v: and w$. They may be written in 
matrix form as 

where wT = (p* ,  v$, v:, u*, y ) ,  A and B are matrices whose elements are functions of 
w ,  and C is a column vector containing the non-homogeneous terms in (23)-(27). 

The classification of the system (32) is based on the nature of the roots 
(eigenvalues) of the characteristic equation 

det (B-AA) = 0. (33) 
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The system (32)  is said to be hyperbolic (Courant & Hilbert 1962, pp. 173, 425;  
Prasad & Ravindran 1985, pp. 152, 153) if (33)  has five real roots { A j } ,  and there are 
five linearly independent eigenvectors {Z,} such that 

ZT(B-AjA) = 0;  j = 1,5. (34)  

In the present case, (33)  has five real roots, only three of which are distinct. 
Denoting the distinct roots by A,, A, and A,, and introducing angles $t ,  defined by 

cot$i = A t ;  i = 1 , 3 ,  
it is found that 

(35) 

= cot-l ($/v,*) ; $z = - [y -  ($n-&)] (double root) ; 

$13 = - [ y +  ($r-&v)] (double root). (36a ,  b ,  c )  

It is also found that there are only three linearly independent eigenvectors 
corresponding to these eigenvalues. Hence the system is not hyperbolic ; indeed it 
cannot be classified as any of the standard types. 

However, some insight into its structure can be gained by decoupling the ‘stress ’ 
equations (24)  and (25)  from the ‘velocity’ equations ( 2 3 ) ,  (26) ,  and ( 2 7 ) ,  as follows. 
If the density and velocity fields are assumed to be known functions of position, i t  
can be shown that (24)  and (25)  are hyperbolic. Similarly, if the mean stress c* and 
the orientation y of the major principal stress axis are assumed to be known 
functions of position, ( 2 3 ) ,  ( 2 6 ) ,  and (27)  are also hyperbolic. Thus we have two sets 
of hyperbolic equations, which, when coupled together by the inertial terms in (24)  
and (25) ,  lead to a non-hyperbolic system. This conclusion is based on the use of an 
associated flow rule ; as discussed later, non-associated flow rules may permit the 
hyperbolic character of the stress and velocity equations to be retained by the 
complete system of equations. 

From a computational viewpoint, a non-associated flow rule appears preferable, as 
it leads to a hyperbolic system for which standard numerical methods are available. 
However, it was difficult to guess a priori the form of the non-associated flow rule. 
Further, having used an associated flow rule in our earlier work on a one-dimensional 
problem, we wished to study its performance in two-dimensional flows. After most 
of the present work was completed, a paper by Bolton (1986) was spotted, which 
provides a simple correlation for the angle of dilation v. This is effectively equivalent 
to a non-associated flow rule, and merits consideration in hopper flows. 

As explained above, we start with an associated flow rule. Though the system is 
not hyperbolic, its ‘ quasi-hyperbolic ’ nature suggests that numerical methods 
devised for hyperbolic systems may be adapted to generate solutions to initial- 
boundary-value problems. This is discussed in detail in 94. 

3. Problem formulation 
3.1. Introduction 

In view of the structure of the basic equations, it is natural to formulate an initial- 
boundary-value problem, with initial conditions specified along a curve spanning the 
bunker, and boundary conditions specified along the walls. The experimental work 
reported in the literature provides valuable clues towards the specification of initial 
and boundary conditions. As discussed in $1,  the following features may be noted : 
(i) I n  the bin section, the material descends in plug flow, with an approximately 
constant density. (ii) There is a transition region between the bin and the hopper 
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T 

FIGURE 3. Shock separating active and passive regions. 

sections, across which the density, velocity, and stresses change sharply. (iii) The 
state of stress is believed to  be ‘active’ above the transition region and ‘passive’ 
below it. ( iv)  The normal stress on the bin walls tends to attain a constant value on 
moving downwards from the free surface. The data of Clague (quoted in Blight 1986) 
suggests that wall stresses in the bin section are largely unaffected by whether the 
material is flowing or not. However, for flat-bottomed bins, the data of Tiiziin, 
Adams & Briscoe (1988) suggest that  dynamic wall stresses exceed static values. 
These observations will now be used to formulate suitable initial and boundary 
conditions. It is convenient to use Cartesian coordinates ( x ,  y )  in the bin, and polar 
coordinates ( r , B )  in the hopper. as indicated in figure 1. 

3.2. Boundary conditions 

As in earlier works (see for example Brennen & Pearce 1978), it will be assumed that 
the solution is symmetric about the centreline 8 = 0 (figure 1). Therefore. the normal 
component of velocity must vanish along the centreline, i.e. 

v,(x = 0, y) = 0 (bin) : vUH(r, 8 = 0) = 0 (hopper), (37) 
where v, is the component of the velocity vector in the x-direction. Similarly, the 
shear stress must vanish. i.e. 

gxy(x = 0, y) = 0 
rro(r, 0 = 0) = 0 

(bin), 

(hopper). 

(38) 
(39) 

Here gXy is the relevant Cartesian component of the stress tensor. If 9 is the 
orientation of the major principal stress axis relative to the horizontal direction 
(figure 3), then in terms of Sokolovskii variables 

cTsr = V + T  cos 2f ;  Vzy = - ~ s i n 2 f .  (40) 
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Using (22) and (40), it follows that (38) and (39) have two solutions each: 

(i) f = 0 

(ii) f = in 

(which is called the passive state), 

(which is called the active state) ; 

and (i) y = 0 (passive state) ; (i i)  y = in (active state) 

In view of the experimental observation (iii) in $3.1, we set 

f(x = 0,y) = in (bin) ; y(r, 8 = 0) = 0 (hopper). (41) 

The location of the exact point on the centreline where the switch in the orientation 
of the u1 axis occurs is discussed later. 

Let us now consider the boundary conditions along the hopper wall. As the normal 
component of velocity must vanish along the wall, we have 

v,(x = L,  y) = 0 (bin) ; v J r ,  8 = 8,) = 0 (hopper). (42) 

The other condition follows from the usual assumption (Brennen & Pearce 1978; 
Savage & Sayed 1979) that the ratio of the shear to normal stress is a constant along 
the wall. If T and N are the shear and normal stresses, respectively, exerted on the 
powder by the wall, (40) imply that on the bin wall 

T --(T T sin 2f 
-=A= = tan&, 
N rzz r+7cos2f 

while (22) imply that on the hopper wall, 

- = tan6, - T - -rr0 - r sin 2y 
N - T  r + ~ c o s 2 y  

(43) 

(44) 

where 6 is a material constant called the angle of wall friction. 
The value of 6 is usually determined from experiments conducted in a Jenike shear 

cell (Jenike 1964a; Brown & Richards 1970, p. 113). Though the state of the material 
in the shear cell is not well defined, previous investigators have used this value of 6 
in the boundary conditions (43) and (44). It was found that the dependence of the 
predicted discharge rate on the wall roughness was qualitatively similar to that 
observed, at  least for steep hoppers. However, most of the earlier analyses were 
confined to incompressible flow. It is not clear whether (44) can be used intact for 
compressible flow. The work of Tiiziin et al. (1988) sheds some light on this point. 
They have attempted to predict the angle of wall friction 6 in a bin, from single- 
particle frictional properties and a geometric description of the particle assembly 
near the wall. For particles with a relatively rough surface, such as mustard seeds, 
S is independent of the bed height and the bulk density. For particles with smoother 
surfaces, such as glass beads, S depends on the bulk density. To simplify the analysis, 
it will be assumed here that 6 is a constant. 

Using the yield condition (17), (43) and (44) reduce to 

where 

sin $sin 2y, - 44 = tan&; sing = -, 
1 +sin gcos 2yw a 

z =L,y) (bin) 
y(r, 8 = 0,) (hopper). 

(45) 
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Equation (45) becomes identical to the incompressible result when 6 is replaced by 
9. It follows that (45) has two roots (see for example Horne & Nedderman 1978; 
Kaza & Jackson 1 9 8 2 ~ ) .  These are 

where the subscripts ‘a’  and ‘ p ’  denote active and passive states, respectively. For 
the special case of smooth walls, 6 = 0, and (47) reduce to the corresponding active 
and passive values at the centreline, namely ya = in and yp = 0. Consistent with the 
choice implied by (41), we set 

f (z  = L ,  Y) = Ya (bin) ; y ( r ,  6 = 6,) = y p  (hopper), (48) 

where ya and yp are defined by (47). 

3.3. Initial conditions 
I n  view of the experimental observation ( i )  in $3.1, we might choose the initial curve 
to be a horizontal line, located some distance above the bin-hopper transition, and 
specify the following initial conditions : 

Values of u* and 3 must also be specified along the initial curve. To do this, it may 
be noted that the mass balance, the coaxiality condition, and the flow rule are 
identically satisfied by a solution of the form (49), and the momentum balances 
admit an exact sohtion of the form 

u* = u*(z /L);  f = f(z/L). (50) 

Here the functions a*(x/L) and f ( x / L )  can be determined by integrating ordinary 
differential equations, as discussed in Appendix A. Note that the stress field so 
obtained is independent of the magnitude of the plug flow velocity u, in accord with 
experimental observations. 

In the static case, Horne C Nedderman (1978), Wilms & Schwedes (1985) and 
others have integrated the force balances in the bin, using the assumptions of 
incompressibility and the Mohr-Coulomb yield condition 

(51) 

Their computations have shown that the stress field (50) is approached asymp- 
totically on moving downwards from the free surface of the fill. It seems 
reasonable to expect that this feature will be preserved when (51) is replaced by the 
yield condition (28). 

3.4. The transition region 
The above discussion suggests that (49) and (50) constitute a plausible set of initial 
conditions, which are compatible with the experimental observations (i), (iii) and (iv) 
in $3.1. It remains to account for observation (ii). This is a difficult problem, for 
which a satisfactory treatment is not available a t  present. Some attempts are 
indicated below. 

Though the initial conditions (49) and (50) constitute a particular solution of the 
basic equations, this solution is not valid in the hopper section as it does not satisfy 

T* = u* sin q5. 
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the appropriate boundary conditions. The latter imply that the velocity and stress 
fields are discontinuous both at the bin-hopper transition, and at  the point on the 
centreline, as yet undetermined, where the state of stress switches from active to 
passive. It seems unlikely that a solution can be found that is continuous in the 
interior of the region bounded by the centreline and the wall, and discontinuous only 
at  the boundaries. Hence the possibility of a discontinuous solution must be 
considered. 

In hyperbolic systems, discontinuous solutions are permissible, but only in regions 
where characteristics of the same family cross or overlap. The characteristics defined 
by (36a) are streamlines, and hence do not overlap, whereas those defined by (36b, c) 
may overlap. The slopes of the latter depend on y and v, and v in turn is a function 
of a = u / G c ( p ) .  Thus the slopes are not known a priori. However, prescription of a 
suffices to determine them, both at  the centreline and the wall. With the yield locus 
used here, the values of a must lie in the interval [O,amax], where 

a,,, = [ 1 +- ,Lcl’’l* 
For a > amax, there are no real characteristics, save the streamline. (In all the 
computations discussed here, a was found to be <amax.) With this interval for a,  the 
orientations of the characteristics may be plotted as a function of a. 

For typical parameter values, it is found that at  the centreline, the characteristics 
of one family overlap, while those of the other family form a fan. On the other hand, 
at  the bin-hopper transition, the inverse situation prevails for most values of a. This 
is discussed in greater detail in Prakash (1989). 

Given the complex behaviour exhibited by the characteristics, it is not clear how 
one should proceed. Therefore, it is helpful to first summarize earlier attempts. These 
may be divided into two groups : (a)  where attention is confined to the stresses in the 
transition region, and (b )  where only the kinematics of this region are considered. The 
above two groups are discussed in turn below. 

Let us first consider the stress aspects of the transition region. All the work 
described here is based on incompressible powders obeying the Mohr-Coulomb yield 
condition. With these assumptions, the force balances constitute a hyperbolic system 
whose characteristics are inclined at  angles f (@-&&) relative to the ( T ~  axis. In  the 
‘differential slice’, approach of Walker (1966) and Walters (1973), the transition 
region was idealized as a horizontal line, which separated an active region above from 
a passive region below. The requirement of continuity of the mean normal (vertical) 
stress sufficed to construct the stress field below the transition. In a more rigorous 
analysis, Jenike &, Johanson (1968) made use of the fact that one family of 
characteristics forms a fan at  the bin-hopper transition. Using this feature, the value 
of Nh/Nb could be estimated, where Nh and Nb denote the normal stresses exerted on 
the hopper and bin walls, respectively, at  the transition point. Subsequently, 
Bransby & Blair-Fish (1974) and Horne & Nedderman (1978) noted that the other 
family of characteristics overlap at this point. Hence an alternative solution 
involving a discontinuity or shock issuing from the transition point into the bunker, 
is also possible. Bransby & Blair-Fish (1974) computed Nh/Nb for both types of 
solutions, but did not determine the shape of the shock a t  interior points. In fact, as 
noted by Horne & Nedderman (1978), it is impossible to build the shock into the 
bunker without prescribing additional information. Thus Savage & Yong ( 1970) 
assumed the shock to be a circular arc, and used jump balances or discontinuity 
relations (Courant & Hilbert 1962, p. 489; Sokolovskii 1965, p. 100; Slattery 1981, 
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p. 41) to obtain the stress field on the downstream side. Similarly, Enstad (1975) 
assumed a form for the y-field below the shock, and used the jump balances to 
determine the shape of the shock. 

On the other hand, Horne & Nedderman (1978) used the fan-type solution near the 
bin-hopper transition, but found. that this would destroy the, symmetry of the 
solution in the region where the fan intersected the centreline. Symmetry was 
preserved by introducing a discontinuity a t  the intersection of the upper boundary 
of the fan and the centreline. This could be continued downwards without making 
any additional assumptions, enabling the stress field in the hopper to  be found. The 
analysis of Horne & Nedderman (1978) is perhaps the most satisfactory treatment of 
the stresses in the transition region. However, the peak in the normal stress on the 
wall does not occur a t  the bin-hopper transition, as has been observed (Rao & 
Venkateswarlu 1974; Clague (quoted in Blight 1986)), but a t  some distance below it. 

Let us now consider the kinematic aspects. If the stress field is assumed to  be 
known, the coaxiality condition (26) and the flow rule (27) form a hyperbolic system 
whose characteristics are inclined at f (an -tv) relative to the IT, axis. Further, if the 
angle of dilation v is taken as a constant, the equations are linear; hence velocity 
discontinuities can occur only across the characteristics (Shield 1953 ; Courant & 
Hilbert 1962, p. 488). The identification of velocity discontinuities with character- 
istics is central to the work of Drescher, Cousens & Bransby (1978) and Michalowski 
(1987). For instance, Michalowski assumes that the velocity field changes 
discontinuously across a characteristic issuing from the bin-hopper transition, from 
plug flow in the bin to one whose velocity vector a t  the transition is parallel to  the 
hopper wall. Since the slope of the characteristics depends on y ,  he also prescribes a 
form for the y-field. 

It is evident from the above discussion that there has been no attempt to treat the 
stress and the kinematic aspects of the transition region simultaneously. At the 
moment, it  is not clear how the approach of Horne & Nedderman (1978) should be 
extended to incorporate variations in density and velocity. Another approach has 
been suggested by R. Jackson (1987, private communication) and by one of the 
referees. This requires a jump in stress across a ‘switch surface’, and a jump in 
velocity (and hence in density) across a velocity characteristic. Unfortunately, with 
the present constitutive equations, a jump in density will in general induce jumps in 
both the state of stress and the angle of dilation v. Thus the jump in stress is not 
confined to the switch surface alone ; further, the slope of the velocity characteristic 
is not uniquely defined, since it depends on v. Hence this approach will not be 
pursued, even though it is intuitively more appealing than the one used here. 
Perhaps the constitutive equations have to be modified before it can be implemented 
satisfactorily. Here we adopt the simpler alternative of permitting all the field 
variables to change discontinuously across a shock or discontinuity curve, the stress 
field from active to  passive, and the velocity field from vertical to one compatible 
with the boundary conditions in the hopper. Thus the present work represents an 
extension of the work of Savage & Yong (1970). 

As in their work, jump conditions must hold across the shock (Courant & Hilbert 
1962, p. 489; Slattery 1981, p. 41). In  the literature, jump conditions have been 
derived for two cases : (i) linear hyperbolic systems, and (ii) quasi-linear hyperbolic 
systems of conservation laws, which are of the form 

aa, aa 
- + L + a ,  = 0. ax ay 
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Here the a, are vector functions of x.y, and the field variables. The mass and 
momentum balances (equations (23)-(25)) may be expressed in the form (52), and 
hence there are three jump conditions corresponding to them. On the other hand, the 
coaxiality condition (26) and the flow rule (27)  are not in conservation law form; 
neither are they linear, since y and v are not known a priori. 

Thc dificulty is overcome by specifying additional conditions on the downstream 
side of the shock. This ad hoc procedure has been adopted for want of a better 
alternative ; it is hoped that a more satisfactory treatment will emerge eventually. 

It has bcen tacitly assumed that the basic equations behave like a hyperbolic 
system, but this is not strictly true. Their quasi-hyperbolic nature provides some 
justification, albeit weak. In addition, it will be seen later that they have to be 
modificd slightly in order to alleviate computational difficulties, and the modified 
oyuations are hyperbolic. 

The s t a g  has now been set for the construction of the shock, details of which are 
discussed below. Since the values of the field variables on its downstream side will be 
used as initial conditions for the hopper problem, the shock will be referred to as the 
initial curve. 

3.5. The initial curve 

Referring to figure 3 ,  let n be the unit normal to the shock S, at  a point P. For a 
stationary shock, the jump mass and momentum balances take the form (Slattery 
1981, pp. 25, 41) 

Jlpv,] = 0; J[pwn u+a .n]  = 0, (53% b)  

where J [ @ ]  = @(2) - @(l) is the jump in any quantity @ on crossing S, v, = n. v is the 
component of velocity normal to S, and all quantities are evaluated at  the point I?. 
Henceforth subscripts 1 and 2 will denote conditions on the upstream and 
downstream sides of S, respectively. It is convenient to express the stress tensor Q in 
terms of Sokolovskii variables g, 7 and 9 (figure 3). Resolving (53b) into components 
normal and tangential to the shock, (53) may be written in dimensionless form as 

(54) P 5 ,  G 1 )  -P&, W , * ( Z ,  = 0, 

where = v n / ( g L ) ; ;  wf = v,/(gL)i and vt = t - u  is the component of velocity 
tangential to S (figure 3) .  The angle @, which gives the orientation of the shock, is 
defined as indicated in figure 3. 

The upstream variables v : ( ~ ,  etc. are assumed to be given by the initial conditions 
(49) and (50), i.e. plug flow with an active stress field. In (49), the value of the 
constant u is unknown a priori; it will be determined iteratively as described later. 

Equations (54)-(56) contain the seven unknowns p&) ,  vzc2,, v&,, gy2,, 7&,, f(?): and 
~, but 7;) is related to gTZ, through the yield condition (28). Thus three additional 
equations are needed to close the set. Here, these are obtained by making the 
following plausible physical assumptions : 

( i )  On the downstream side of S ,  the velocity vector is directed radially towards 
the apparent vertex of the hopper section. This ensures that the velocity field is 
compatible with the boundary conditions (37)  and (42). By way of additional 
justification, we turn to the experimental observations of Lee et al. (1974), Bransby 
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FIGURE 4. Comparison of the shock profile predicted by the present theory (---) with the rupture 
layer observed by Michalowski (1987) (-) and the prediction of Michalowski (1987) (--.-). The 
parameters q5 = 32O, 6, = 6, = 1 lo, 8, = 20", p* = 35, and p,* = 0.78 are reported in Michalowski 
(1987). Here, the remaining parameters are assumed to be: r= 1.34, h = 0.02, n = 1.05, and u = 
0.0125. 

& Blair-Fish (1975) and Michalowski (1987). With reference to figure 4, these suggest 
that the material moves vertically in the bin section, parallel to the hopper wall in 
the triangular region bounded by the rupture layers AD and AC and the wall DC, and 
radially below AC. Michalowski (1987) concurs with these findings, but his data for 
8, = 20" (figure 10 of his paper) can be approximated well by the assumption of 
radial flow, even in the region ADC. Thus this assumption may be reasonable for 
small values of 8,; for larger values, a realistic model must allow for two or more 
rupture layers, so that a region of flow parallel to the walls can be accommodated. 
Here the problem has been simplified by ignoring this region, and considering only 
a single rupture layer or shock. 

(ii) The next assumption is that the material on the downstream side is at a critical 
state, i.e. 

With the parameter values used, the material on the upstream side is found to be 
'denser than critical', in the terminology of Schofield & Wroth (1968, p. 21). Hence 
it dilates across the shock to attain the critical state (57). Such behaviour is evident 
in the radiographs of Lee et al. (1974), Bransby & Blair-Fish (1975), and Michalowski 
(1987). However, it is not clear from the literature that downstream conditions 
necessarily correspond to a critical state. 

It may be noted that assumptions (i) and (ii) have been used earlier by Drescher 
et al. (1978), in their analysis of the kinematics of rupture surfaces in hoppers. Using 
the above two assumptions together with the jump balances (54)-(56) and the stress 
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boundary conditions (41) and (48), the values of all the downstream variables can be 
found a t  both the wall and the centreline, as discussed shortly. 

(iii) Elsewhere an additional condition is needed; here we use the ad hoc 
assumption that p& is a quadratic function of 8, which takes on the known values 
a t  8 = 0 and 8,. The basis for this choice is that symmetric solutions of the basic 
equations (23)-(27) can be ensured by requiring p* ,  v: and u* to be even functions 
of 8, and v; and y to  be odd functions of 8. The proposed functional form is merely 
a simple example of an even function. Clearly, other choices are possible. Indeed, this 
non-uniqueness is a shortcoming of the present theory. 

Let u and u ( ~ )  denote the magnitudes of the vertical velocity in the bin section and 
the radial velocity in the hopper section, respectively. Then the normal and 
tangential components of velocity are given by 

v&) = - u sin + ; ~ t " ; ~ ,  = u cos + 
VX(~) = - yZ)  sin (8 + +) ; vz2, = u ( ~ )  cos (8 + +). 

(58)  

(59) and 

Using the jump mass balance (54), yZ)  may be eliminated to get 

With the help of (58)-(SO), the jump momentum balances may be rewritten as 

+ [cg) - c;)] + [7%, cos + 2+) -7;) cos ( 2 ~ ( ~ )  + 2+)1= o 
(61) 

and 

(62) 

All the downstream variables a t  the wall and centreline are determined as follows. 
A t  the centreline, 8 = 0, y(l) = in and f (2 )  = 0. Hence (62) reduces to  

Since the expression in square brackets does not vanish in general, (63) implies that  

$ = O ;  or +=in. (64) 

The root + = 0 corresponds to  a shock which is vertical a t  the centreline. I n  this 
case, the value of u(,)(8 = 0) is arbitrary, since the jump mass balance is identi- 
cally satisfied at 8 = 0. Of course, + =+ 0 for 8 > 0, and y2,(8 = 0) could possibly 
be set equal to  limo+o[u~2)(8)]. Here we choose the other root, + = in, which 
corresponds to a shock which is horizontal a t  the centreline. This choice permits 
U ( ~ ) ( B )  to be determined for all values of 8,0 < 8 < 8,. On setting + = in in (61) and 
using (41) and (57), a nonlinear equation results for po = p&(8 = 0), which is solved 
iteratively using the Newton-Raphson method. At the wall, 8 = Ow, f ( l )  = ya, and 
f (2 )  = yI,+8,. Hence (61) and (62) are two nonlinear equations for pw = p&(8 = 8,) 
and +, = $(8 = Ow), which are also solved iteratively using the Newton-Raphson 
met hod. 
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At interior points 0 < 0 < 0,, p& is assumed to be given by 

as indicated earlier. On substituting for p&) from (65) into (61) and (62), these reduce 
to a pair of nonlinear equations, which are solved iteratively for f ( 2 )  and $. Finally, 
the shape of the shock is found by integrating the equation 

=-cot(B+$) 
1 dr* 

r* dB 
-- (66) 

subject to the initial condition r*(B = 0,) = r z  = l/sin0,. At every stage of the 
integration, the value of I) is taken from thc solution of (61) and (62). 

This completes the specification of t8he initial curve, and the initial data along it. 
As mentioned earlier, the velocity data depend on u, the magnitude of the plug flow 
velocity in the bin section. To determine u, an additional 'exit '  condition must be 
specified. This is discussed below. 

3.6.  The exit condition 

Following Savage (1965) and Davidson & Nedderman (1973), it has been common 
practice (Brennen & Pearce 1978; Savage & Sayed 1979; Kaza & Jackson 1982a; 
Meric & Tabarrok 1982) to assume that the material in the hopper is bounded from 
below by a traction-free surface spanning the exit slot. Along this surface, the shear 
and normal stresses vanish; below it, the material is assumed to fall freely under 
gravity, with zero frictional stresses. For cohesionless materials, the mean stress cr* 
vanishes along this surface. In particular, we require 

a*(r*  = r z ,  0 = 0,) = 0 ;  

Here re is the radial coordinate corresponding to the hopper exit (figure l) ,  and D is 
the width of the exit slot (figure 3).  

It appears that (67) suffices to determine u ~ guessing a value for u, and integrating 
the basic equations down the hopper section, it may be checked whether (67) holds 
to within a prescribed accuracy. If not. the procedure may be repeated with another 
value of u. However, there are two obstacles to this approach, one related to the 
unattainability of the exit condition (67). and the other to the unrealistic 
consequences of this condition. These arc discussed below, followed by an alternative 
proposal for the exit condition. 

( a )  The momentum balances (24) and (25) are singular on the traction-free surface 
a* = 0, since a* multiplies all the derivatives of y .  Hence it is extremely difficult to 
approach this surface from above, at  least with the present numerical method. This 
problem was encountered earlier by Savage & Yong (1970) and Kaza & Jackson 
( 1 9 8 2 ~ )  in their incompressible analyses of hopper statics and hopper flow, 
respectively. 

( b )  In  the incompressible case, it has been shown (Kaza & Jackson 1984) that 
material on the downstream side of the traction-free compacts if 
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where w is the distance measured along the upward normal to this surface The 
existing approximate solutions (see, for example, Savage 1965 ; Brennen & Pearce 
1978 ; Savage & Sayed 1979) predict a traction-free surface which lies above the plane 
of the exit slot, and along which the above inequality holds. Thus particles below this 
surface tend to press against each other, leading to  a buildup of frictional stresses. 
This is inconsistent with the assumption of free fall with zero frictional stresses, and 
hence the exit condition (67) must be abandoned. This conclusion is reinforced by the 
density measurements of Bosley et al. (1969), Van Zuilichem et al. (1974), and Fickie 
et al. (1989), which show a strong dilation, rather than compaction, near the exit slot. 
Indeed Fickie et al. (1989) have suggested that there is no traction-free surface of the 
type discussed above. If so, the constitutive equations may have to be modified 
suitably, such that at the exit plane, v* > 0 except possibly at the edge of the slot, 
i.e. at (r* = re*, 8 = Ow). As the form of the modified constitutive equations is not clear 
at present, the existing ones will be retained, and the exit condition will be altered 
instead. 

So far, the discussion has been confined to the case of incompressible flow in the 
hopper section. It was conjectured (Kaza & Jackson 1984) that  if this assumption 
were rclaxed, dilation of the material might be strong enough to  prevent compaction 
on the downstream side of the traction-free surface. In  the present work, this could 
not be checked because of numerical problems encountered in approaching u* = 0. 
However, in the special case of compressible flow through a hopper with smooth walls 
and radially directed gravity, there is no such singularity in the basic equations. 
Hence they can be integrated all the way to the traction-free surface, as discussed 
elsewhere (Prakash & Rao 1988). Using the results presented there for three 
materials, it can be shown that the exit condition is still inconsistent, in spite of 
dilation above the traction-free surface. 

I n  view of the problems associated with a traction-free surface, the exit condition 
(67) will be abandoned in favour of an alternative one proposed by Kaza & Jackson 
(1982b). This assumes that the hopper terminates at a ‘surface of free fall’, or ‘exit 
shock ’, which spans the exit slot. The field variables change discontinuously across 
it, attaining a state of vertical velocity and zero frictional stress (u* = 0) on the 
downstream side. This ensures that the material dilates as it falls vertically under the 
influence of gravity, while v* vanishes throughout. Thus the inconsistency referred 
to earlier is avoided. However, a new problem arises, as explained below. 

It can be shown (Kaza & Jackson 1982b) that the shape of the exit shock is 
determined by integrating the equation 

(68) 
[a*sin8--7*sin (2y+O)]+p*w:[v:sin8+v,* cost91 
[a* cos 8+7* cos (2y+8)] +p*$[v: sin 8+ v,* cos 81 

= tanf = 
1 dr* 

r* d8 

subject to  the initial condition r*(8,) =re*. Here y9’ is the angle measured 
anticlockwise from the radial direction to the upward normal to the shock. 

and the bin velocity u, the exit shock 
can be constructed using (68). While is known a priori, u is not; hence the exit 
condition does not determine u uniquely. However, an upper bound on u may be 
constructed by appealing to the hyperbolic nature of the basic equations, as 
indicated below. 

The s!ope of the shock depends on the values of the upstream variables, which are 
known only within the domain of determinacy ABC of the exit slot AB (figure 5 ) .  At 
the point B, if the shock lies outside ABC, as in figure 5, it cannot be continued 
towards the centreline. It can be shown that this first occurs when u exceeds a critical 

For any specified values of the exit radius 
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FIQURE 5.  Domain of determinacy of exit slot : AB, exit slot ; AC, BC, ‘outermost ’ characteristics 
at C ;  BD, tangent to the shock a t  B;  BI, hopper wall. Inset: typical characteristics BC, BE, BF, 
BG, and BH corresponding to the roots $z, $3, and $,, respectively of (83). 

value u,; with u = u,, the exit shock is tangential to the characteristic BC at  the 
point B. In all the cases investigated here, this suffices to ensure that the shock lies 
within ABC (see, for example, figure 20). Thus the shock can be constructed for any 
value of u < u,, and u, is an upper bound on the discharge rate for all solutions 
satisfying the exit condition a t  r* = r,*. 

4. Solution procedure 
The procedure for numerical integration of the basic equations (32) will now be 

described. As the initial curve defined by (66) is not a circular arc in general, it  is 
convenient to use new coordinates ( t ,  y), defined by 

where 5, = ((r,*,O,). The function g(r* ,e)  is chosen so that 5 = 0 coincides with the 
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initial curve (66) and 6 = 1 corresponds to r* = 0. The specific form used for E(r*,  0) 
is given in $5.1. 

Computations were originally performed with 6 and 7 as the independent 
variables. While using a difference scheme and marching downwards from the initial 
curve, it was found that the step size A6 had to be decreased as r* decreased, in order 
to ensure convergence. On the other hand, a constant value of At sufficed when t and 
7 were uscd as the independent variables. 

Equations (32) may be regarded as comprising two sets of hyperbolic systems, as 
noted in $2.5. Considering the velocity equations (23), (26) and (27) first, there are 
three characteristics C,, i = 1,3, whose slopes $, are given by (36). The characteristic 
curves may be represented in parametric form by 

cot $, 
; i = 1,3. (2), = r*Bw 

Along these curves, the compatibility conditions, or equations in characteristic 
normal form, may be found using standard techniques (Courant & Hilbert 1962, 
pp. 424, 426; Prasad & Ravindran 1985, pp. 151, 153). They take the form 

(i) along C ,  

D, P* 

p*sinv[v:(cos2$,+ l)-v,*sin2$,] 

(ii) along C,,C, 

(72) 
vz sin 2$, - 2v: cos2 $, 

= 2, 3, 
Ds r* 1 Di vz 

Ds 
sin2$,-+2sin2$,- - 

where (73) 

is the directional derivative along the ith characteristic. 

(363, c), and the compatibility conditions take the form 
Turning to the stress equations (24) and (25), the characteristics are given by 

D cr* D, y [ aT* sin2 I),] D, p* 
[cos (2y+ $,) - sin v cos $,I 1- [2r* sin $,I -+ - - - 

DS DS ap* cos$, DS 

- -- ar* 1 --p*v:sin(2y+$,)- aP* Dl vB* 
ap* r* cos $, In (1 - te) at DS 

* *  
-p*vu7* cos (By + $,) -- Dl P - ' 8  [v: sin (2y+ -v? cos (2y + $,)I Ds r* 

2r* cos $, 
-p* cos (27 + $, + 0 )  ; 

+ r* 
i = 2,3, (74) 
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+At  

FIGURE 6. Grid for the inverse marching scheme. 

along the G, and C,  characteristics. Equations (74) are not true compatibility 
conditions, since they contain the derivatives a/at  and DJDs in addition to D,/Ds. 

Having obtained the compatibility conditions, i t  remains to discuss the numerical 
method used to integrate them. This is based on an inverse marching scheme (Zucrow 
& Hoffman 1976, p. 336), wherein characteristics are drawn backwards from any 
point P(t, 7) at which the solution is desired, to the previous ‘time ’ level ( t  - At)  where 
the solution is known (figure 6). Along the characteristics, which are approximated 
by straight line segments, the compatibility conditions are integrated using a 
modified Euler predictor-corrector method. The reader is referred to Zucrow & 
Hoffman (1976, p. 341) for a detailed discussion of this method. 

At the point of intersection of the initial curve with the wall, both initial and 
boundary conditions have been specified for vo and y. This invariably leads to 
discontinuities in the values of their derivatives, which propagate into the hopper 
along Characteristics issuing from this point or corner, The inverse marching scheme 
used here cannot follow these discontinuities as it does not track specific 
characteristics. I n  retrospect, i t  appears that a direct marching scheme (Zucrow & 
Hoffman 1976, p. 333), wherein some characteristics are tracked, may have been 
more suitable. However, this scheme also has two defects: (i) it leads to non- 
uniformly spaced grid points, which are more difficult to handle, and (ii) most of our 
results are based on a modified set of equations ($5.2.2), for which two characteristics 
issue from the corner into the hopper, and cannot be tracked simultaneously. It is 
hoped that this issue will receive greater attention in future. 

The peculiar nature of our equations warrants a few additional remarks. Referring 
to figure 6, suppose the values of all the field variables are known along the line 
t = t,, and it is desired to find the solution at the point P. The velocity compatibility 
conditions (71) and (72) are first integrated to obtain p* ,  vz and v: at P. Using the 
value of p* at P, the stress compatibility Conditions (74) are then integrated to obtain 
CT* and y at P, treating all the terms on the right-hand side as the non-homogeneous 
part of these equations. This implies that  the derivatives D, v,*/Ds, D, v:/Ds and 
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dp*/?t are required a t  the points L, M and N in the predictor stage, and, in addition, 
at the point 1' in the corrector stage of the integration. Here, they are estimated by 
using a backward difference scheme. For example, a t  point P 

where As, is the distance PQ (figure 6) .  Clearly (75)  cannot be used for points on the 
initial curvc t = 0. Here it is assumed that 

Since the initial conditions correspond to a critical state, and since the inertial terms 
are small in the vicinity of the initial curve, (76)  is perhaps not unreasonable. 

As a test casc, the problem of compressible flow through a hopper with smooth 
walls and with radially directed gravity was examined. Here the basic equations 
reduce to ordinary differential equations, which were integrated using a semi-implicit 
Runge-Kutta method (Prakash & Rao 1988). The results were found to be in good 
agreement with those obtained using the present difference scheme. 

5.  Results 
Results will now be presented from two angles : (i)  to illustrate some aspects of the 

thcory, and (ii) to compare with experiments. In case ( i ) ,  computations arc largely 
confined to Leighton Buzzard sand. Here the values of the material parameters in the 
vieltl locus (28) and the flow rule (31) are taken to be q5 = 37O, r = 1.34, h = 0.02. and 
n = 1.05. The first three values are obtained from plots of 7 11s. v (at critical state), 
and rrc 7 7 s .  l/E,(=p,/p) reported in Atkinson & Bransby (1978, p. 240), and n is 
estimated from the data of Airey, Budhu & Wood (1985) (see Appendix B). In  case 
(ii) ,  only the values of q5 could be obtained from the literature, and, for want of data, 
the other parameters are assumed to have the same values as for Leighton Buzzard 
sand. 

The results may be divided into four parts : (i) the entry shock or initial curve. (i i)  
a bunker with smooth hopper walls, (iii) a bunker with rough hopper walls, and ( i v )  
the incompressible approximation. These are discussed in turn below. 

Most of the computations are based on p:, = 0.82, which is in the range of poured 
bulk densities for sands (Atkinson & Bransby 1978, p. 10). The dependence of the 
valucs of the variables on the downstream side of the entry shock on upstream ones 
is examined below. 

5.1. The entry shock 
Thc full curves in figures 7 and 8 show profiles of p&, cr&, and v&) for Leighton 
Buzzard sand, with /3* = 5.25, u = 0.0125, 8, = 1 6 O ,  8, = 16" and Ow = 10'. The 
value of /3* corresponds to a bin width of about 2 m, and u has been chosen so that 
the ratio of bin width to exit slot width is about 30-40. (A large value of this ratio 
facilitates the search for asymptotic stress and density fields, as discussed later.) The 
quantities 8, and 8, represent the angle of wall friction between the material and the 
bin wall, and that between the material and the hopper wall, respectively. For 
example, the angle of wall friction between sand and a lucite wall is 15' (Nguyen 
et al. 1980). 

The profile of a(*,,, obtained from (57) is similar in shape to that of p& (figure 7 )  
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0.760 20 

FIGURE 7. Stress and density profiles on the downstream side of the entry shock: ---, smooth- 
walled hopper with 6, = 0" ; -, rough-walled hopper with 6, = 16". Other parameter values are : 
r= 1.34, A = 0.02, n = 1.05, ,f3* = 5.25, p,* = 0.82, u = 0.0125, 4 = 37", 6, = 16" and 0, = 10". 

FIGURE 8. Radial velocity and y-profiles on the downstream side of the entry shock: ---, smooth- 
walled hopper with 6, = 0" : - , rough-walled hopper with 6, = 16". Other parameters are as in 
figure 7 .  

because the range of densities is small. The profile of y(2 )  is virtually linear (figure 8) ; 
this is found to be true for other parameter values also, provided that 6, is not too 
small. It is seen that the magnitude of ~ r * ( ~ )  is greater a t  the centreline than at  the 
wall, as expected on account of wall roughness. 

The circles in figure 9 show the entry shock obtained by numerical integration of 
(66), while the full curve is a parabolic fit, given by 

r* =a{1+m[$1') .  (77) 
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FIGURE 9. Shock profiles obtained by numerical integration of (66) : A, smooth-walled hopper with 
8, = 0"; 0, rough-walled hopper with 8, = 16". Other parameters are as in figure 7. The full curves 
are least-square fits, and the dot-dashed curve is a circular arc at the bin-hopper transition T. 

Here 

is chosen to ensure that the curve (77) passes through the bin-hopper transition T. 
The parameter a is determined using the method of least squares ; it  is seen from 
figure 9 that  (77) provides a good fit to the data. This is found to be true in all the 
cases considered here. 

In  $4, new coordinates ( t , r )  were introduced in place of the polar coordinates 
( r* ,O) .  Using (77), the function f (r*,O) in (69) may now be chosen as 

-* 
'I . 

E(r*,O) = 1 -  
a{ 1 + m[O/8w]2> ' 

(79) 

Thus f = 0 along the initial curve, and i t  increases on moving down the hopper. 
We now discuss the effect of inertial terms and some of the material parameters on 

the downstream variables and the shock shape. The inertial terms in (61) and (62) are 
found to be small compared to the other terms. Hence a good approximation to  the 
exact solution may be obtained by dropping the inertial terms. Making an additional 
assumption that 7:) = g(*,,sin+, which is reasonable if n x 1,  (61) and (62) can be 
manipulated to obtain 

cos(f(,,+y(,,+2$) = - s i n ~ c o s ( ~ ( ~ ) - f ( l ) ) ~  (80) 
The variable yo, is known a priori only a t  the centreline and the wall, and is 

unknown elsewhere on the shock. Equation (80) may therefore be used to obtain an 
estimate for the orientation of the shock a t  the wall $w = $(O = Ow).  Equation (80) 
has two roots for @w. It can be shown that, while one of the roots implies that  the 
shock always lies outside the bunker, the other ensures that i t  always lies inside 
(Prakash 1989). Choosing the latter, we obtain an explicit relation for $w, which may 
be used as an initial guess for the iteration scheme. 
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p;) = 0.82 p;, = 0.78 

u = 0.0125 IL = 0.125 u = 0.0125 = 0.125 

$ (deg.) 78.0 78.0 78.0 78.0 
P L  0.7661 0.7661 0.7665 0.7655 
4L 29.7 29.7 28.3 28.3 

- G 2 )  1.32 x 1.32 x lo-' 1.26 x 1.26 x lo-' 

TABLE I .  Effect of variation in p;, and u on shock slope and the downstream variables for T,eighton 
Buzzard sand, with q5 = 37'. f = 1.34. h = 0.02. n = 1.05. S,, = 6, = 16", 0, = 10". b* = 6.25 .  and 
p,* = 0.82. a t  7 = 0.5 

Y(2)  ((leg.) 10.8 10.8 10.8 10.8 

n Av,,/.vb 
1.05 12.1 
1.20 17.3 
1.50 55.6 

TABLE 2. Effect of n on the ratio of normal stresses a t  the bin-hopper transition. Here LYh = normal 
stress on the hopper wall, and Nb = normal stress on the bin wall. Parameters values are as  in 
table 1 

As shown in table 1, the shock slope $ and the downstream variables pf2), a,*,, and 
Y ( ~ ,  are weak functions of u. This may be anticipated on account of the smallness of 
the inertial terms. On the other hand, ?I&) is approximately proportional to pl;, u, in 
view of (60). Further, the variation of bin density p:, from 0.82 to 0.78 does not 
significantly affect the downstream variables $, p& and Y ( ~ , .  

It is interesting to note that the parameter n, which determines the shape of the 
yield locus (28) strongly affects the value of the ratio Nh/Nb (table 2 ) .  Here X, and 
N ,  are the normal stresses on the hopper and bin walls, respectively, at  the 
bin-hopper transition. Measured values of N,/.V, are in the range 2-13 (Jenike & 
Johanson 1968; Itao & Venkateswarlu 1974; Sundaram & Cowin 1979). suggesting 
that values of n close to 1 give more realistic estimates of N,,/iV,. 

Figure 4 compares the predicted shape of the shock (DFT) with the rupture layer 
DAT observed by Michalowski (1987), and also his predicted rupture layer DET. It 
is seen that the actual rupture layer lies in between both the theoretical curves, but 
its shape rcsembles Michalowski's curve more closely. The rupture layers AC and AG. 
which separate material moving parallel to the wall from that moving radially. 
cannot be predicted with the present assumptions. 

5.2.  The smooth-walled hopper 

Though thc ultimate aim is to predict stress and velocity fields in a bunker with 
rough walls, it is instructive to first consider the special case of a bunker with rough 
bin walls (6, > 0 ) ,  and smooth hopper walls (6, = 0). As computational times arc 
found to be shorter in the latter ease, certain features of theory may be explored in 
greater detail. In a similar vein, it is tempting to consider the simpler case of a 
smooth-walled bunker (6, = O , S ,  = 0).  However. with 6, = 0, the stress field (50), 
which provides values of CT* and f on the upstream side of the shock, is not 
approached asymptotically on moving downwards from the free surface of thc fill. 
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FIGURE 10. Stress profile along the centreline for a smooth-walled hopper : -, , bwic equations 
with (At = A7 = 0.025), respectively; 0 ,  A, x , Mohr-Coulomb 
approximation with (At = 2.5 x A7 = 0.02), (At = 5 x lo-', A7 = O.Oi ) ,  
respectively. The dot-dashed curve (A) is the asymptotic stress field. The parameter values are : 
r = 1.34, A = 0.02, n = 1.05, /3* = 5.25, p,* = 0.82, u = 0.0125, 6, = 0.975, a = 5.733, q5 = 37", 
8, = 16", 8, = 0" and 0, = 10'. 

A7 = 0.05), (At = 5 x 
AT = 0.05), (At = 

5.2.1. Preliminary results 

The basic equations (23)-(27) are integrated numerically using the method 
outlined in $4, with the values of the variables on the downstream side of the entry 
shock as initial conditions. The results in figures 10-12 are for Leighton Buzzard 
sand, with p* = 5.25, u = 0.0125 and & = 0.975. The latter corresponds to an exit 
slot radius r,* = 0.144, or a slot width of D = 0.05 m. This is only a nominal figure, 
for use with (69). The actual value of r:, at which the exit condition is satisfied, may 
be determined as described in $5.2.3. 

The full curve in figure 10 shows the profile of the mean stress u* along the 
centreline of the hopper, with a grid size of At = and 87 = 0.05. The squares, 
obtained with a finer grid size of At = 5 x A7 = 0.025, are in close agreement 
with the full curve; this suggests convergence of the solution. The waviness in the 
stress profile has been observed in the incompressible case also (Savage & Yong 1970; 
Kaza 1982), where it was thought to be a genuine feature of the governing equations 
and not an artefact of the numerical method used. 

Figure 11 shows the profile of y ,  the orientation of the u1 axis, along the radial line 
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FIGURE 1 1 .  y-profile along a radial line at 7 = 0.5 for a smooth-walled hopper: -, ---, basic 
equations with (At = AT/ = 0.05), (At = 5 x A7 = 0.025), respectively; 0 ,  A, x , 
Mohr-Coulomb approximation with (At = 2.5 x A7 = 0.05), (At = A7 = 0.02), 
(At = 5 x lo-', AT/ = 0.01), respectively. The dot-dashed curve (A) is the asymptotic y-profile. 
Oscillations observed on approaching the exit with the fine grid are shown in the inset. Parameter 
values are as in figure 10. 

rj = 0.5 (full curve). The oscillations decrease in amplitude on moving downwards, 
i.e. as E increases. However, the amplitude begins to increase rapidly in the vicinity 
of the exit slot, making it difficult to continue the integration. As discussed in 53.6, 
this behaviour is presumably due to the singularity in the momentum balances, 
which is manifested when u* + O  (figure 10). The broken curve in figure 11 shows the 
profile obtained with a finer grid size of At = 5 x lop5, AT = 0.025. Here the 
oscillations are relatively undamped, and the profile differs markedly from that 
obtained with the coarser grid (full curve). As indicated later, in 95.2.2, there is 
reason to believe that the broken curve represents the converged y-profile. Thus the 
coarse grid is adequate for u* (figure lo), but not for y. As the magnitude of y is close 
to zero, small errors in y do not affect the u* profile appreciably. Close to  the exit slot, 
the amplitude of the oscillations increases rapidly, even with the fine grid, as shown 
in the inset to figure 11.  Once again, this reflects the singularity in the momentum 
balances. 

Figure 12 shows the density profile along the wall. The material dilates 
continuously on moving downwards, but the effect is most pronounced near the exit 
slot. This behaviour is qualitatively in accord with available data (Bosley et aE. 1969; 
Van Zuilichem et al. 1974; Fickie et al. 1989). 

While the present numerical scheme gives reasonable results, the computational 
time is excessive - with At = 5 x and AT = 0.025, a run in single precision takes 
about 3 hours on the DEC 1090 computer. The source of the difficulty appears to be 
the term &-*lap*, which multiplies the derivatives of density in the compatibility 
condition (74). With the yield condition given by (28), 

a7* u,* sin #(a)"'"] 

aP* 
- - 
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FIGURE 12. Density profile along the wall for a smooth-walled hopper: -, basic equations with 
(At = 7 = 0.05). The 
dot-dashed curve (A) is the asymptotic density field. Parameter values are as in figure 10. 

A7 = 0.05) ; 0 ,  Mohr-Coulomb approximation with (At = 2.5 x 

If a remains close to unity, as is the case in all the results presented here, &*/ap* 
becomes unbounded as A -+ 0. For example, using the parameter values listed in 
figure 10, the value of this term at 6 = 0 , ~  = 1 is 1246. Thus small errors in 
evaluating the density field are amplified by this factor, and hence a fine grid is 
needed to ensure convergence. 

5.2.2. The Mohr-Coulomb approximation 
In this section an approximation is introduced, which reduces the computational 

time significantly. The basis for this approximation is the observation that the 
material remains close to the critical state a = 1 over most of the hopper. For 
example, a(t = 0.98,q = 1.0) = 0.9909. When a = 1, the yield condition (28) reduces 
to the Mohr-Coulomb yield condition (51). Since a z 1, it is proposed to use (51) in 
place of the actual yield condition throughout the hopper. Since r* does not then 
depend explicitly on p*, density derivatives do not appear in the compatibility 
condition, and the source of stiffness is eliminated. 

Using (51), the momentum balances (24) and (25) take the form 

aa* aY + [l -sin q5 cos 2y] -+ 2a* sin 9 sin 2y - 
ar* ar* 

sin q5 sin 2y aa* 2a* sin q5 cos 2y ay 2a* sin q5 cos2y 
-- -- +p* case = o (81) - 

r* ae r* ae r* 
and 

av; v; av; v, vg aa* aY [ ar* r* ae * r* *I ar* ar* 
p* v: -+- -+- -sin sin 2y-- 2a* sin (p COB 2y - 

1 +sin q5 cos2y aa* 2a* sinq5sin 2y ay 2a* sinq5sin 2y 
-- -- -p* sin8 = 0. (82) 

r* ae r* ae r* 
+ 
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FIGURE 13. Plot of F as a function of E; for a smooth-walled hopper: --, u=O.O125. 
Mohr-Coulomb approximation with (At = 2.5 x A 1  = 0.05). Other parameter values are as in 
figure 10. AB represents the right-hand side of (88). 

Equations (81) and (82), together with (23), (26) and (27) constitute the governing 
equations for the Mohr-Coulomb approximation (MCA). 

Unlike the basic equations (23)-(27), the equations of the MCA are hyperbolic, 
with five real and distinct characteristic roots A, = cot $G.I. These are given by 

fil = cot-'($/$); ~ z , a = - [ y T ( i n - $ v ) ] ;  $4.5 =-[~T(in-$$)] .  (83) 
The first three roots are identical to the roots of the basic equations, while the 

other two arise because of the MCA. Since the equations are hyperbolic, the modified 
Euler predictor-corrector method of Zucrow & Hoffman (1976, p. 341) can be used 
without making any changes. The initial and boundary conditions are also 
unaffected, except that 6 is replaced by q5 in (47b). 

The MCA has been introduced to mitigate computational difficulties associated 
with the basic equations. From another viewpoint, the equations of the MCA may be 
regarded as representing a model with a non-associated flow rule. This is because the 
angle of dilation v is still computed from the old yield condition (28), which now plays 
the role of a plastic potential, and not from the Mohr-Coulomb yield condition (51). 

We now discuss the results obtained with the MCA. The circles, triangles, and 
crosses in figure 10 represent the v* profiles for three different grid sizes. The profiles 
appear to have converged, and are in good agreement with the results obtained using 
the basic equations. In  the case of the y-profiles (figure l l) ,  the circles lie close to the 
full curve, and the triangles and crosses are close to the broken curve. Thus the latter 
are likely to represent converged profiles. It is interesting to note that the MCA 
faithfully mimics the oscillations in the basic equations. The circles in figure 12 
provide further evidence of the agreement between the basic and approximate 
equations. Regarding the velocity profiles, in both cases the circumferential velocity 
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vt is of order lop4, and oscillates about zero, while the radial velocity v: grows like 
( l / r * )  on moving downwards. 

Turning to the issue of computational time, i t  is found that integration of the MCA 
equations in single precision, with a grid size of At = lop4 and A? = 0.02, takes about 
2 h and 12 min. This is significantly lower than the time of 3 h, which is needed to 
achieve comparable accuracy with the basic equations. If small errors in y and u: can 
be t,olerated, a coarser grid of At = 2.5 x A? = 0.05 suffices for the MCA (see 
figures 1G12). With this grid, it takes only about 28 min for a single run. 

Since the MCA has been shown to be a good approximation, and it requires less 
computational time than the basic equations, all the results presented henceforth will 
be based on the MCA, unless otherwise indicated. 

5.2.3. The exit shock 
As discussed in $3.6 the following exit condition will be used: a t  the edges A and 

B of the exit slot (figure 5), the exit shock should be tangential to the characteristics 
AC and BC, which define the domain of determinacy of AB. Referring to  (83) and 
figure 5, the root corresponding to the characteristic BC is given by 

For the parameter values used here the other roots are excludcd, since computations 
show that the characteristics corresponding to them are disposed to the right of BC. 
This is shown schematically by the lines BE, BF, BG, and BH in the inset to  figure 5. 

At the smooth hopper wall, y = 0,v;  = 0, and hence (68), which determines the 
slope of the exit shock, reduces to 

$4 = - [Y-( iX-i$) l .  (84) 

where 

and 

tan@, . 
O - 1+sin$’ 

a =  b, =_ a,(l-sin$); $; = $’(@ = 0,) 

The dependence of F on follows from the governing equations (23), (26)-(28), 
(81), (82), the boundary conditions (48), and the initial conditions (49). I n  deriving 
(85), the Mohr-Coulomb yield condition (51) has been used. In  view of (84) and (85) ,  
the exit condition is given by $; = $4 or 

For a given material, and a specified wall angle Ow, (86) and (87) imply that (88) 
provides a relation between the density p:, the reciprocal bin width B*, the velocity 
u of the material in the bin, and the exit slot radius r,*. Since the range of poured 
densities is small, p; will henceforth be treated as a fixed parameter, and (88) will be 
used to explore the interrelationships between the three parameters /3*, u and r,*. 

For fixed values of P* and u, the value of r,* may be determined by plotting F ( [ ;  
r * ) ,  obtained from (87), vs. r*,  or equivalently us. 6. On this plot, the right-hand side 
of (88) may be represented by a horizontal line, and its intersection with the 
curve F ( c ;  6) fixes 6, = ( (T,* ,  0,) (see (79)). 

The full curve in figure 13 shows a plot of F us. 6, for u = 0.0125 and p* = 5.25. The 
value of F is small over most of the hopper, but it rises sharply near the exit slot. This 
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is caused by an increase in the inertial terms, and a decrease in CT* as the exit is 
approached ; indeed F may be regarded as a ratio of inertial to frictional effects. The 
monotonic increase of F with 6 results in a unique value 5, = 0.972, which 
corresponds to r,* = 0.162, or a slot width of 0.056 m. (Note that the value of 6, is 
slightly different from the nominal value f e  = 0.975, which has been used in (69) to 
generate the results shown in figures 1&13.) I n  all the cases examined here, a unique 
value of r,* is obtained for every pair of values of /3* and u. 

Having located the exit slot corresponding to u = 0.0125 and /3* = 5.25, the exit 
shock is found by integrating (68), using an Euler scheme with a step size IArl = 0.01. 
It is found to lie below the plane of the exit slot, but within the desired domain of 
determinacy. 

5.2.4. Discharge rates 
A parameter of great interest in studies on hopper flow is the discharge rate or mass 

flow rate M .  In fact, an accurate prediction of M has been the cherished (and often 
unfulfilled) goal of most attempts. Results presented in this section are confined to 
smooth hopper walls, and hence cannot be compared directly with experiments. 
However, the dependence of M on some of the parameters may be examined. It is 
convenient to introduce a dimensionless discharge rate V, based on the width D of 
the exit slot, and the thickness B of the bunker perpendicular to  the plane of flow: 

ni - Pb*U v, = 
p,,,BD(gD)i - 42(r ,*  sin 0,);' 

In  the previous section, the value of r,* corresponding to specified values of u and 
/3* has been determined. However, the inverse situation is encountered while 
attempting to compare measured and predicted discharge rates, since both r: and /3* 
are specified, and u has to be estimated. This involves an iterative procedure, as 
discussed in Prakash (1989). 

For ease of exposition, it is helpful to  replace u, /3* and r,* by three other 
parameters V,, Band 52 respectively, where V, is defined by (89), and 

Here pis inversely proportional to the exit slot radius, and SZ represents the ratio of 
the bin width to exit slot width. Based on earlier work (Davidson & Nedderman 
1973; Prakash & Rao 1988), i t  may be anticipated that the discharge rate V, is (i) 
independent of 52 for deep hoppers, i.e. for 8 $- 1, and (ii) a weak function of 18. 
Computations show that this is indeed the case, as discussed in Prakash (1989). 

A similar behaviour is exhibited by the stress profiles along the hopper wall, 
corresponding to two different values of 8, but virtually identical values of p (figure 
14). Though the profiles differ markedly near the top of the hopper sections, they 
converge to  a common asymptotic field near the exit. It is in this region that the 
profiles become independent of the height of fill. 

The circles and crosses in figure 14 denote 8-values on the upstream and 
downstream sides, respectively, of the shock a t  the bin-hopper transition. Though the 
jump in 8 depends on the value of 8, this is merely an artefact of the scaling used. 
In  terms of g* = a/(pmaxgL), the stress jump my2, - .TI, = 22.2, both for SZ = 32.9 and 
for 52 = 16.5. Thus a?!, - C T ~ ,  is virtually independent of SZ. This result may be inferred 
from (61) and (62), provided the inertial terms are negligible. It would be interesting 
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FIGURE 14. Dimensionless stress = a/(pmargre) along the wall, for two values of 52: ---, p* = 8.4, 
u = 0.04, Ee = 0.96; -, p* = 4.2, u = 0.01414, 5, = 0.98. Mohr-Coulomb approximation, with 
(At = 2.5 x A7 = 0.05). Remaining parameter values are as in figure 10. The circles and crosses 
denote the bin stress and hopper stress, respectively, at the bin-hopper transition. 

to measure (T& -at ,  in geometrically similar bunkers of various sizes, and check this 
conclusion. 

5.2.5. Comparison with the smooth wall, radial gravity problem 

For the special case of a hopper with smooth walls and gravity directed radially 
towards the vertex of the hopper, the basic equations admit a cylindrically 
symmetric solution of the form p = p( r ) ,  v, = vr(r ) ,  vg = 0, (T = a ( r )  and y = 0. The 
functions p ( r )  etc. may be determined by integrating ordinary differential equations 
in r (Prakash & Rao 1988). In that work initial conditions were specified along a 
traction-free surface. Here, for purposes of comparison with the vertical gravity 
results, the initial curve is assumed to be a circular arc through the bin-hopper 
transition T (figure 4). Along this curve, the field variables are set equal to the 
corresponding values for the vertical gravity problem, at  the point T. 

For p = 24.7, SZ = 23.0, and the other parameter values as listed in the caption of 
figure 10, it is found that for Leighton Buzzard sand flowing through a smooth- 
walled hopper, the assumption of radial gravity leads to a discharge rate V, which 
is within 1 YO of the actual value. Similarly, the stress and density profiles do not 
differ significantly from those for the case of vertical gravity, as may be expected for 
small values of 8,. However, one important difference must be noted. With vertical 
gravity, computations breakdown as a* +. 0, whereas this problem is not encountered 
with radial gravity. Hence, in the latter case, two discharge rates V, and V,, can be 
computed, where V, is based on the exit shock, and V,, is based on the traction-free 
surface. It is found that V, is about 13 % less than V,, ; thus the use of the exit shock 
effects a significant reduction in the discharge rate. 

For 8, = lo", the exit shock can be constructed, but for 8, = 30" it descends 
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FIGURE 15. Stress profiles for a rough-walled hopper: -, ---, Mohr-Coulomb approximation 
along the centreline and wall, respectively, with (At = A7 = 0.05); 0, x , basic equations 
along the centreline and wall, respectively, with (At = lW5, AT/ = 0.05). The parameter values 
are r = 1.34, h = 0.02, n = 1.05, B* = 5.25, p,* = 0.82, u = 0.0125, 5, = 0.975, w = 5.881, q5 = 37', 
6, = 6, = 16' and 0, = 10". 

steeply from the hopper wall, and intersects the traction-free surface before reaching 
the centreline. Thus the exit shock cannot be fully realized in this case. Further, the 
density (p")  on the downstream side of the exit shock is found to be too low - around 
0.234.38. These features are symptoms of deficiencies in the present exit condition. 

5.3. The rough-walled hopper 

5.3.1. The Mohr-Coulomb approximation 

I n  this section, the assumption of smooth hopper walls is relaxed. Thus the effect 
of wall roughness may be examined, and discharge rates compared with experiments. 

As in the case of the smooth-walled hopper, computations with the basic equations 
turn out to be time consuming. Using the parameters listed in the caption of figure 
15, and a grid size of At = lop5, A7 = 0.05, an integration from t = O ( 5  = 0) to  
t = 0.095(< = 0.296) takes about 1 h. Since the hopper exit corresponds roughly to 
t = 1,  i t  is estimated that a run from the entry shock to the exit will take about 10 h 
of computing time. With the existing facilities, this translates to  about 10 days of 
real time per run. Hence, as before, the basic equations are abandoned, and the 
Mohr-Coulomb approximation (MCA) is invoked. 

As in the case of the smooth-walled hopper, the state of stress remains close to the 
critical state a = 1 for 0 < t < 0.095. For example a(t = 0 . 0 9 5 , ~  = 0.5) = 0.9920. 
Further, in this range of t-values, there is satisfactory agreement between results 
obtained with the basic equations and the MCA equations. This is cvidcnt from 
figures 15-19, where the circles and crosses represent the former, and the full and 
broken curves the latter. 

The time taken to integrate the MCA equations up to t = 0.095, with a grid size of 
At = A7 = 0.05, is about 6 min, as compared to 1 h for the basic equations. The 
key point to be noted is that the MCA permits a larger value of At to be used, without 
a concomitant reduction in accuracy. The accuracy of the MCA was checked by 
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FIGURE 16. y-profile along a radial line at 7 = 0.5 for a rough-walled hopper: -, A, 
Mohr-Coulomb approximation with (At = A7 = 0.025), respect- 
ively; 0,  basic equations with (At = A7 = 0.05). The dot-dashed curve (A) is the asymptotic 
y-field. Parameter values are as in figure 15. 

AT/ = 0.05), (At = 5 x 

integrating the equations with a finer grid of At = 5 x Arj = 0.025. For instance, 
figure 16 shows satisfactory agreement between the y-profiles for the two grid sizes, 
denoted by the triangles and the full curve. 

A run from the initial curve to t = 0.905, where the computations break down, 
takes about 50 min, as compared to an estimated 10 h for the basic equations. Thus 
the MCA leads to  a significant reduction in the computation time, and the effect is 
more pronounced than in the case of the smooth-walled hopper. 

In view of the above discussion, all further results will be based on the MCA only. 
Figures 15-19 show the profiles of u*, y ,  p*, v z  and v: along the radial lines. They 
are qualitatively similar to the profiles for a smooth-walled hopper (figures 10-12), 
and exhibit a waviness which is damped as .$ increases. A possible reason for this 
damping is discussed in the section below on asymptotic fields. As before, the 
solution breaks down when u*+O. However, i t  has been possible to integrate the 
equations until the value of u* is fairly small -about 6.5 x lop3 (at 7 = 1)  in the 
present case, which corresponds to u = 125 N/m2. It may be noted that the strain- 
gauge type of load cells, which are used for wall stress measurements in bunkers, have 
an accuracy of about 7-60 N/m2 (Bransby & Blair-Fish 1974; Tiiziin & Nedderman 
1985). 

Figures 18 and 19 show that the circumferential velocity v z  remains small 
throughout the hopper, and the flow is nearly radial. This conclusion may not hold 
for large values of 8,. 

Turning to the exit condition, the rough-wall counterpart of (88) is found to be 

(92) where a, = sin 8, 
cos 8, + sin q5 cos (27, + 8,) ’ 

. b, G sin 0, - sin q5 sin (27, + 0,) 
cos 0, +sin q5 cos (By, + 8,) ’ 
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FIGURE 17. Density profiles for a rough-walled hopper: -, ---, Mohr-Coulomb approximation 
along the centreline and wall, respectively, with (At = A7 = 0.05); 0, x , basic equations 
along the centreline and wall, respectively, with (At = AT/ = 0.05); -. .-, , asymptotic 
density fields along the centreline and wall, respectively. Parameter values are as in figure 15. 
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FIQURE 18. Circumferential velocity along a radial line a t  7 = 0.5 for a rough-walled hopper : -, 
Mohr-Coulomb approximation with (At = 
A7 = 0.05). The dot-dashed curve (A) is the asymptotic velocity field. Parameter values are as in 
figure 15. 

A7 = 0.05) ; 0,  basic equations with (At = 
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FIGURE 19. Radial velocity along the centreline for a rough-walled hopper: -, Mohr-Coulomb 
approximation with (At = AT = 0.05). The 
dot-dashed curve (A) is the asymptotic velocity field. Parameter values are as in figure 15. 

AT = 0.05); 0, basic equations with (At = 

\. j i 
0.225 

FIQURE 20. Exit shock (-) and ‘outermost ’ characteristics (-.-) for a rough-walled hopper. 
Mohr-Coulomb approximation with (At = AT = 0.05). Other parameter values are as in 
figure 15. 

yw = y(r,*, Ow), and F ( 4 ;  T,*)  is defined by (87). Using (91), and following the procedure 
described in 55.2.3, the exit shock may be constructed. This is shown by the full 
curve in figure 20; in contrast to the smooth-walled shock, it lies above the plane of 
the exit slot. However, it is only marginally above, the maximum height relative to 
the exit slot being about 1 mm. 

3 FLM 225 
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5.3.2. Perturbation solution for the asymptotic stress and density Jields 

In  this section, an attempt is made to deduce certain features of solutions to the 
basic equations. This is largely motivated by earlier work on incompressible flow, 
which suggests that  stress and velocity fields converge to certain asymptotic fields, 
as r* decreases, i.e. as 5 increases (Johanson 1964; Jenike 1965; Pitman 1986). 
Further, similar behaviour was observed in the compressible, smooth-wall, radial 
gravity problem, where the existence of an asymptotic density field was also 
demonstrated (Prakash & Rao 1988). It should be noted that these asymptotic fields 
are particular solutions of the basic equations, for the special case of negligible 
inertial effects. Indeed, significant deviations from these fields occur near the exit 
slot, owing to growing inertial effects. Therefore, the inertial terms will be omitted 
from the momentum balances in the present analysis also. The incompressible results 
can be exploited by using a perturbation solution based on a parameter which is a 
measure of density variation. Thus the base state or zero-order solution represents 
incompressible flow, whereas higher-order correction terms reflect the effect of 
compressibility. Details of the procedure are described below. 

The parameter A,  which occurs in the relation (30) between the critical-state mean 
stress uF and the density p*,  is a suitable perturbation parameter. To see this, note 
that it may be rearranged to get 

Thus, in the limit h --f 0, p* +. l/r, which may be regarded as the 'incompressible ' 
density. Further, since h is expected to be a small parameter -around 0.02 for 
Leighton Buzzard sand - all the variables may be expanded in powers of h to get 

(94) 
and so on. 

Substituting expansions of the form (94) into the basic equations (23)-(27) and 
collecting terms of O(ho) and O(h') gives two sets of equations. Let us first consider 
the equations of O(ho) : 

a,* = azo(r*, e) + ArFl(r*, 0) + . . . 

27; cos 2y0 +p,*cose = 0, 
a i a  

-(a,a,*,-~,* cos2yo)---(~,*sin2yo)- 
ar* r* ae r* 

27: sin 2 yo 
-p,* sin 0 = 0, 

i a  
(r,*sin2yo)+--(aoa,*+~,* cos2yo)- 

a -- 
ar* r* a8 r* 

1 
where Po* = 7. 

In  (96) and (97), the mean stress a* has been replaced by aa;. It is convenient to 
do so, since the yield condition (28) involves a, rather than a*. 
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or, since av,*,/ar* $; 0 in general, sinv, = 0. Therefore, i t  follows from (31) that 

and hence from (29) and (28) 

Thus the MohrXoulomb approximation (51) is recovered in the incompressible limit 
h+O, and (95)-(98) are identical in form to the commonly used incompressible 
equations (see, for example, Jenike 1964b). 

It is well known that the incompressible equations admit an exact solution of the 
form (Jenike 19643) 

a, = 1 (101) 

a,* = azo; 7: = azOsinq5 = a,*sinq5. (102) 

(103) 

(104) 

CT: = a:, = r*bo(B); yo = go(@, 

wo(@. = 0, V f o  = - 
r* ' 

where the functions b,, go ,  and wo are determined by integrating ordinary differential 
equations in 0. Equations (103) represent the 'radial stress field', and (104) the 
' radial velocity field ' ; these are the incompressible asymptotic fields referred to  
earlier. 

Having solved the equations of O(ho), we turn to the equations of O(hl) .  These are 
given by 

a i a  
r* ae ar* [a: - 7: cos 29, + 2r*b0 y1 sin q5 sin 2go] -- - [7: sin 29, + 2r*b0 y1 sin q5 cos 2go] 

2 
r* 

- - [7: cos 29, - 2r*b0 y, sin q5 sin 2go] + p: cos 8 = 0, ( 106) 

i a  a 
ar* r* ae [7: sin 29, + 2r*b0 y1 sin q5 cos 2go] + - - [a: + 7: cos 29, - 2r*b0 y1 sin q5 sin 2g,] -- 

2 
r* 

-- [7: sin 29, + 2r*b0y1 sin q5 cos 2go] -p: sin 0 = 0, (107) 

and 

ar* r* ae r*]+(r*)2cos2go 4w0y1 = 0, (108) 

--p,*(n-l) cos2go 
a, = 

2n sin q5 

The zero-order solution has been used to simplify (105)-( 109). Further, (93) and 
(103) imply 

pll(e) +pin In r*, (110) 

where 

For typical parameter values, go(€') is found to  increase monotonically from zero at 
0 = 0 to yow = y,($ = q5) (see (47€5 at 0 = 8,. Since n > 1, and 2g0(8,) < in, it follows 
from (109) that (i) a, < 0, and (ii) the largest value of lall occurs at the centreline. 

3-2 
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FIGURE 21. Stress profiles obtained by numerical integration of the Mohr-Coulomb approximation 
with (At = 47 = 0.05), along the centreline (-) and wall (---), compressible asymptotic 
stress fields along the centreline (--..-) and wall (-.-), and radial stress fields along the 
centreline (0) and wall ( x ), for a rough-walled hopper. Parameter values are as in figure 15. 

Thus a = 1 +ha, < 1,  and hence the material dilates as it flows down the hopper; 
further the dilation is expected to be more at  the centreline than at  the wall. 

With p: given by (1  lo), the momentum balances (106) and (107) admit a solution 
of the form 

.,*1 = bl,(8) r* + b,,(B) r* In r* ; y1 = gll(8) +g12(B) In r*. (112a, b )  

Substituting ( I  12 b )  into the coaxiality condition (108), it is found that the equation 
of continuity (105) and the coaxiality condition (108) admit a solution of the form 

where 

and the functions b,,, b,,, gll, g,,, wl, and w,, are determined by integrating ordinary 
differential equations, as discussed in Appendix C. It is interesting to note that 
b,, = p$bo;  g12 = 0;  wl, = -p$ wo. Hence (113) and (114) imply v;, = 0, and 
consequently the velocity field is radial to O(h) .  

The functions wo and wll are of the form wo = wo(B; P,) ; wll = wll(B; Pl, P,), where 
P, and P, are integration constants. Within the context of the asymptotic fields, the 
boundary conditions that must be prescribed for wo and wll are not evident. Here we 
choose the values of P, and P, so that the exit condition (91) is satisfied approximately 
at the desired exit slot radius r* = rz ,  as explained in Appendix C. 

The curves marked A in figures 16, 17, and 21 show the asymptotic fields for y ,  p* ,  
and u*. As 5 increases, the profiles obtained by numerical integration of the MCA 
tend to converge to these fields. Though a*(&' = 0) > u*(O = 8,) a t  the top of the 
hopper section 6 = 0 (figure 15), the trend is reversed for 5 > 0.542 (figure 21), in 
keeping with the behaviour predicted by the asymptotic fields. Similarly, for 
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FIGURE 22. Profiles of y across the hopper at various values of t :  curve 1 ,  t = 0 ;  2, t = 0.03; 3, 
t = 0.06; 4, t = 0.1 ; 5, t = 0.12; 6, t = 0.13225. Mohr-Coulomb approximation with (At = 5 x 
A7 = 0.025). Parameter values are: r = 1.34, h = 0.02, n = 1.05, b* = 35, p,* = 0.82, u = 0.04, 
te = 0.92, a = 3.96, 4 = 31", 8, = 8, = 15" and 0, = 15'. 

I 

f l  > 0.542 the density at  the centreline is lower than that at  the wall (figure 17), as 
expected. Figure 21 shows that the u* profiles deviate from the asymptotic fields in 
the region 0.88 < fl  < 0.96, which corresponds to about three exit slot radii. Thus 
inertial effects are confined to a small region near the exit slot. The asymptotic radial 
velocity field, estimated by the procedure discussed in Appendix C, lies within 16 YO 
of the profile obtained by numerical integration of the MCA (figure 19). For h = 0.02, 
the compressible asymptotic stress field and the incompressible radial stress field 
[equation (103)] do not differ significantly, as shown by the curves marked A, and the 
crosses and circles in figure 21. However, for h = 0.05 there is a marked difference 
between the two, and the actual stress profile converges to the compressible 
asymptotic field (Prakash 1989). 

Figures 10 and 12 show that in the smooth-walled hopper case also, stress and 
density profiles obtained by numerical integration of the basic equations converge to 
the asymptotic fields as 6 increases. However the y-profile in figure 11 (broken curve) 
does not converge to the asymptotic field, unlike in the rough-walled case (figure 16). 
It should be noted that in the incompressible case, Kaza (1982) has shown by 
examining an approximate version of the governing equations, that for a smooth- 
walled hopper, perturbations to the radial stress field are downward unstable for 
4 < 42". 

5.3.3. Computational dificulties with larger wall angles 

All the results presented so far have been confined to 0, = 10'. For a larger wall 
angle of 8, = 15", attempts to integrate downwards from the entry shock were not 
successful. For example, the y-profiles in figure 22 display a 'travelling wave ' type 
of behaviour. The waves move across the hopper rapidly, and it is difficult to 
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integrate the equations beyond t = 0.13225 (6 = 0.284). The reason for the dificulty 
becomes apparent on examining the directions of the C, characteristics a t  various 
locations on the line t = 0.13225. Close to 7 = 0.125, the characteristics change 
direction sharply and become nearly parallel to the r/-axis. Thus the solution cannot 
be continued further with the present coordinate system. In addition, the 
characteristics appear to  converge in this region, suggesting the formation of a shock. 

It is interesting to  note that similar problems also arise in the incompressible case 
for 8, = 15", when a modified form of the entry shock is used as the initial condition. 
The incompressible approximation is discussed later, in Q 5.4. 

If a shock does form, a method has to be devised to locate the point a t  which it 
forms, and then track it through the hopper. As we do not know how this is to be 
done, a simpler alternative is adopted here, as indicated below. 

Initial conditions based on the entry shock are abandoned, and conditions based 
on the asymptotic fields are adopted in both the compressible and the incompressible 
cases. Details are given in Appendix C. A similar procedure was used by Kaza & 
Jackson (1982~)  in the incompressible case. It is hoped that the actual solution will 
converge to the asymptotic fields, after experiencing rapid changes in the upper part 
of the hopper. Clearly this modification of the initial conditions is not a satisfactory 
resolution of the problem, but merely one that permits a solution to be obtained. It 
is hoped that the entry region will be examined more carefully in future, with 
reference to : (i)  numerical integration using an alternative system of coordinates ; for 
example, if the trajectory of the major principal stress axis is used as a coordinate 
curve, then the characteristics always have a constant orientation relative to  it, (ii) 
the possible development of shocks from smooth initial data, and (iii) the convergence 
of solutions to the asymptotic fields. 

5.3.4. Discharge rates 

In this section, discharge rates predicted by the present theory will be compared 
with the experimental results of Nguyen et al. (1980), for the flow of sand through a 
plane bunker with lucite walls. 

The quantity of interest is the dimensionless discharge rate VD, defined by (89). It 
is convenient to rewrite this as 

where the integration is performed across any circular arc. 
Nguyen et al. (1980) report discharge rates for wall angles in the range 15 6 8, 6 90". 

As mentioned in the previous section, the use of initial conditions based on the entry 
shock led to computational difficulties for 8, = 15". Since these are likely to persist 
for larger wall angles, alternative initial conditions based on the asymptotic fields 
will be used here, as explained in Appendix C. Using the equations for the asymptotic 
fields, (115) may be rewritten as 
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6, (deg.1 r: Po Po VD, r* 

15 0.322 1.0 0.801 0.343 
15 0.322 0.89 0.713 0.317 
22 0.222 1.0 0.645 0.234 
22 0.222 0.92 0.593 0.222 
32 0.157 1.0 0.415 0.162 
32 0.157 0.92 0.382 0.154 

TABLE 3. Compressible discharge rates (Po VDa) corresponding to various exit slot radii (r*) .  
Mohr-Coulomb approximation. Parameter values and grid sizes are as in figure 23 

With wo(8) and wll(B) obtained as described in Appendix C, the integrals in (117) may 
be evaluated by quadrature. Here it is found convenient to use the following 
alternative procedure, for the reason discussed below. Introducing new variables zo 
and z,, defined by the differential equations 

and satisfying the initial conditions 

z0(O) = 0 ;  Z,(O) = 0 (119) 

Thus the use of the functions zo and z1 permits the evaluation of V,, and V,, 
simultaneously with wo and wll, when (1 18) are integrated numerically along with 
the differential equations for w, and wll. 

For a specified value of r,*, (1  16)-( 120) determine an approximate discharge rate 
V,, = V,,+AV,,. The value is not exact, since evaluation of the constants Pl and P2 
in the expressions for wo and wll involves simplifying assumptions (see Appendix C). 
The procedure for obtaining the actual discharge rate V, which corresponds to r,* will 
be discussed shortly. 

It is found that V,, < 0 for the parameter values used here. Thus the approximate 
analysis suggests that inclusion of density variation reduces the discharge rate ; this 
is borne out by the results presented later. 

To determine the actual discharge rate V,, the asymptotic fields are used as initial 
conditions along the entry shock, and the MCA equations are integrated downwards. 
The exit condition will be satisfied a t  some point r* = r:, which is +r,* in general. 
Thus the discharge rate V,, {equation (116)) corresponds to r,* when approximate 
analysis is used, and to rT when the MCA equations are integrated. Multiplying the 
constants Pl and P2 by a common factor Po, and repeating the procedure, a discharge 
rate Po V,, and an exit slot radius r* = r! are obtained. A suitable choice of Po 
(typically in the range 0.850.92) ensures that r: and rz bracket the desired value re*, 
as shown in table 3. The discharge rate V, is then found from V,, and Po V,, by linear 
interpolation. A similar procedure is adopted in the incompressible case also. 

Let us briefly consider the choice of parameter values. The angle of internal friction 
4, and the angle of wall friction 6, are taken to be 31" and 15", respectively, as given 
by Nguyen et al. (1980). The precise values of the bin width 2L, the slot width D ,  and 
the particle density ps, have not been reported by Nguyen et al. (1980). Here we 
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FIGURE 23. Comparison of predicted and measured discharge rates: ~ (labelled C), and 0 ,  
Mohr-Coulomb approximation with (At = 2 x AT/ = 0.05) for 0, = 22' and 8, = 32O, and 
(At = AT/ = 0.05) for 8, = 15'; - (labelled I) and A. incompressible approximation with 
(At = 2.5 x AT/ = 0.05) for all wall angles; 0 ,  experiments of Nguyen et al. (1980). All 
computations are based on asymptotic fields as initial conditions. The broken curves --- (C) and 
_-_ (I) are the compressible and incompressible discharge rates, respectively, obtained by the 
approximate analysis. Parameter values: r= 1.34, h = 0.02, R = 1.05, /3* = 35, 5, = 0.92, and 
a = 3.96 for 8, = 15'; a = 2.747 for 8, = 22'; a = 1.934 for 8, = 32'; 4 = 31', a,, = 15'. 

set, p* = p,/(p,,,gL) = 35(L x 0.15 m), SZ = r$/r,* = 2L/D = 12(D x 25 mm), and 
ps = 2670 kg/m3 (the value reported in Brennen & Pearce (1978) for a sand with 
similar material properties). The values of L and D are within the range of values 
used by Nguyen et al. (1980). Recently R. H. Sabersky (1989, private com- 
munication) has indicated that the experiments were performed with L = 0.14 m and 
D-values in the range 25.4-31.8 mm. Based on earlier results, i t  is expected that the 
difference between the parameter values used in the computations and the 
experiments will not affect the predicted discharge rates significantly. 

We are now in a position to compare measured and predicted discharge rates, for 
both compressible ( A  > 0) and incompressible ( A  = 0) cases. Details of the latter 
computations are given in $5.4. The predicted compressible discharge rates are 
shown by the full curve labelled C in figure 23. They are well below the measured 
values, and the error increases with B,, from 38% of the latter at 0, = 15" to 59% 
at Ow = 32". It is interesting to note that the incompressible results, shown by the full 
curve labelled I in figure 23, also underestimate discharge rates. In this case, 
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however, the error is less - about 31 %n to 55 Yn. This is surprising, as the compressible 
model is believed to be more realistic, and the density measurements of Bosley et al. 
(1969), Van Zuilichem et al. (1974), and Fickie et al. (1989) reveal a strong dilation 
near the exit slot. Perhaps there is some deficiency in the manner in which density 
variation has been incorporated here. 

For a smooth-walled hopper with 8, = 30°, the exit shock could not be constructed, 
as mentioned in $5.2.5. The problem disappears when wall roughness is included; the 
exit shock is then fully realized for all thc wall angles considered here, namely 
15" < 0, < 32", and its shape is similar to that of the shock down in figure 20. 

The broken curve labelled C in figure 23 shows approximate compressible 
discharge rates, computed using (116)-(120) and (C 10). These are within 9% of the 
exact (numerical) values, and have been obtained with far less computational effort. 
These remarks also apply in the incompressible case, where the difference between 
approximate and exact values is about 1 1  %. 

When the traction-free surface is used as the exit condition, approximate analyses 
of the incompressible equations usually overestimate discharge rates for small values 
of 8, (Brennen & Pearce 1978; Savage & Sayed 1979; Kaza & Jackson 1982a; Meric 
& Tabarrok 1982). However, the converse is true when the surface of vertical free fall 
is used as the exit condition (Kaza & Jackson 1982b). The full curves in figure 23 are 
based on the exit shock, and conform to the latter trend. As explained earlier, it is 
not possible to integrate the equations down to the traction-free surface and check 
whether the discharge rates are overestimated. 

All the same, the equations can be integrated until (r3 = (r*(r*,8,) is fairly 
small - about 0.0194 to 3.96 x lW3 for 15" < 0, < 32". It is interesting to  consider 
the implications of a hypothetical and arbitrary exit condition 

~3 = 0.0194. (121) 

In the compressible case, with 8, = 15", this condition is satisfied at r: = 0.294 and 
r t  = 0.273 for the prescribed discharge rates V,, = 0.801 and Po V,, = 0.713, 
respcctively. The discharge rate V,, corresponding to  the exit condition (121), and 
exit slot radius r,* = 0.322 (table 3) is then found from V,, and Po V,, by linear 
extrapolation. A similar procedure is also adopted in the incompressible case. The 
compressible and incompressible values of V,, so obtained are shown in figure 23 by 
the square and triangle, respectively. Two features are noteworthy: (i) the 
discrepancy between theory and experiment is now reduced to about 22% in the 
compressible case and about 10% in the incompressible case, and (ii) the difference 
in the values of (rz a t  the edge of the exit slot, as obtained with different exit 
conditions (91) and (121), is only about 0.044. 

The above discussion suggests that the exit condition (91) should be modified, but 
the form this should take is not clear at the moment. It appears that future attempts 
to refine discharge rate predictions should concentrate on the region close to the exit 
slot. It is conceivable that the appropriate equations for this region differ markedly 
from those used higher up in the bunker. 

5.3.5. Comparison of predicted density projiles with experiments 
In this section, we present a preliminary comparison of the predicted density 

profiles with the measurements of Fickie et al. (1989) for glass beads flowing through 
a wedge-shaped hopper with Ow = 23" and D = 1.3 cm. The values of + and 8, have 
not been reported in their paper, but R. Jackson (1989, private communication) has 
indicated that 4 = 32.4", and 8, = 15.1". 
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FIGURE 24. Comparison of predicted and measured density profiles along the centreline of a hopper : 
-, Mohr-Coulomb approximation with (At = 2 x AT/ = 0.05) ; 0, experiments of Fickie et 
aE. (1989). The broken curve represents free fall under zero stresses. Parameter values are: r = 1.2, 
A = 0.02, n = 1.05, /3* = 118.6, 6, = 0.84, a = 2.559, $ = 32.4', 8, = 15.1", 0, = 23". 

To proceed with the comparison, the initial curve is chosen as a circular arc passing 
through r = rw = 10.4 cm and 8 = 8,. This corresponds roughly to the highest level 
a t  which the density has been reported. The value of the parameter r is chosen by 
trial and error so that the initial density at 6' = 0 is p* = 0.77, which is close to  the 
measured value. The procedure described in Appendix C and $5.3.4 is then used to 
generate the asymptotic fields, and adjust the discharge rate to ensure that the exit 
shock passes through the edge of the physical exit slot. 

The circles in figure 24 show the measured density profile along the centreline of 
the hopper, while the predicted profile is shown by the full curve. Here $ = y'/D, 
where y' is the vertical distance measured upwards from the plane of the exit slot. 
The exit shock intersects the centreline at ij = 0.046, and hence p* jumps from a 
value of 0.744 above to 0.605 below. The broken curve represents the density profile 
obtained by assuming free fall under gravity with zero frictional stresses. We note 
that Fickie et al. (1989) have also predicted the density profile below the exit slot 
using the assumption of free fall. The only difference is that they appear to have used 
the measured value of the density a t  the exit plane as the initial density, whereas 
here the initial condition is obtained as part of the solution of the hopper problem. 
Within the hopper, there is more dilation than predicted by the model. It remains to 
be seen whether the use of a larger value of h will lead to better predictions. Below 
the hopper, the agreement is fairly good; this is somewhat surprising, and may be 
a fortuitous occurrence. Alternatively, i t  is conceivable that the density on the 
downstream side of the shock is a weak function of conditions on the upstream side. 

Figure 25 shows density profiles measured on horizontal planes above and below 
the plane of the exit slot, and also the corresponding predictions. Within the hopper, 
the profiles are almost flat, but the measured density is higher a t  the centreline than 
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FIGURE 25. Comparison of predicted and measured density profiles on horizontal planes above and 
below the plane of the exit slot: -, Mohr-Coulomb approximation with (At = 2 x lo-*, A7 = 
0.05) ; 0, 0, x , experiments of Fickie et al. (1989). The broken curves represent free fall under zero 
stresses. Parameter values are as in figure 24. -, 0,  ?i = 0.423; ---, 0, $ = -0.0385 ; ---, x , 
$ = -2.154. 

at the wall, in contrast to predictions. Below the hopper, there is fair agreement 
between theory and experiment for $ = -0.0385, and the density is now much higher 
at the centreline than at  the edge of the jet of particles. The crosses in figure 25 show 
that at a lower value of $( = -2.154), the jet has spread laterally. Thus the 
assumption of vertical fall is not valid here. 

5.4. The incompressible approximation 
If the sizes of the yield loci increase rapidly with increasing density, i.e. if 
i%*/tIp* % 1, then a wide range of stresses correspond to a narrow range of densities, 
and the assumption of incompressible flow may be reasonable (Jackson 1983). It is 
of interest to compare the incompressible and compressible solutions, so that the 
importance of density variations may be assessed. 

The incompressible equations may be obtained from the compressible equations 
(23)-(27) by expanding all the field variables in powers of A ,  and collecting terms of 
O(Ao). The latter are given by the continuity equation 

the coaxiality condition (26), and the momentum balances (81) and (82). As 
mentioned earlier, (93) provides the incompressible density p: = l/r, in the limit 
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h+O. For an alternative derivation of these equations from the compressible 
equations, see Jackson (1983). In  the limit h + O ,  a+ 1,  as noted earlier in the 
subsection on asymptotic fields. Hence the incompressible equations may be 
regarded as the outcome of the 'critical-state approximation ' (Jackson 1983). It 
should be noted that the momentum balances are identical in form to those of the 
Mohr-Coulomb approximation. 

The incompressible equations have been examined in detail elsewhere (see for 
example, Jenike 1 9 6 4 ~ ;  Savage & Yong 1970; Brennen & Pearce 1978; Kaza & 
Jackson 1 9 8 2 ~ ;  Meric & Tabarrok 1982). Here we merely note that they have four 
real and distinct characteristics, and are hyperbolic. In contrast, the basic 
(compressible) equations (23)-(27) have only three real and distinct characteristics, 
and are not hyperbolic. Further, these characteristics do not go over smoothly to  
those of the incompressible equations as h+O. These two features of the basic 
equations, which appear to be unsatisfactory, may be eliminated by using MCA 
equations (23), (26) ,  (27), (81) and (82). 

Numerical integration of the MCA, with 8, = 32", p* = 35.0, and the asymptotic 
fields as the initial condition leads to a discharge rate V ,  = 0.382, and a reciprocal 
exit slot radius p = 227.3. For the same values of Ow, p* and $, numerical integration 
of the incompressible approximation with the radial stress and velocity fields as 
initial conditions leads to a discharge rate V, = 0.422. Thus the incompressible 
approximation overestimates the discharge rate by 10%. Figure 23 shows that, at 
other values of 8, also, discharge rates are overestimated by roughly the same 
amount. Similarly, for 8, = 32O, the incompressible approximation overestimates 
the mean stress by 5 1 0 % .  

6. Discussion 
Continuum models have been used here to predict the stress, density, and velocity 

fields in wedge-shaped bunkers. The principal results obtained, and the limitations 
of this work are summarized below with reference to 

(i)  The transition region between the bin and hopper sections, 
(ii) the hopper section, 
(iii) the exit region, 
(iv) discharge rates, 
(v) density profiles, and 
(vi) the incompressible approximation. 

6.1. The transition region 
This has been idealized as a single rupture layer or shock across which the density 
decreases, the state of stress switches from active above to passive below, and the 
velocity vector from vertical above to radial below. Because the flow rule and the 
coaxiality conditions are not in conservation-law form, the jump balances have been 
supplemented by additional assumptions. The predicted shape of the shock differs 
markedly from that observed by Michalowski (1987), particularly near the centreline 
(figure 4). It appears that the use of a single rupture layer is not justified in this 
region. 

At the bin-hopper transition, the ratio of the normal stress on the bin wall to that 
on the hopper wall, NJN,, is found to be a strong function of the parameter n, which 
determines the slope of the yield locus (table 2). With TZ close to  1, the value of Nh/Nb 
lies in the range of measured values. 
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6.2. The hopper section 
While it is well known that the incompressible equations are hyperbolic, the nature 
of the compressible equations does not appear to have been examined in literature. 
Here it is shown that the basic equations are not hyperbolic, even though they have 
real characteristics. This stems from the use of an associated flow rule ; it is shown in 
$5.2.2 that hyperbolicity may be restored by using a non-associated flow rule. More 
experimental data are needed to choose between these two types of flow rules. 

Though the basic equations are not hyperbolic, they may, in a certain sense, be 
split into two systems of hyperbolic equations as explained in $2.5. However, the 
computational time is large, owing to the large magnitude of the term &*lap*, which 
occurs in the compatibility condition (74). 

The above problem is alleviated by noting that the material remains close to the 
critical state 01 = 1 over most of the hopper section. In the limit a+ 1, the yield 
condition (28) reduces to the Mohr-Coulomb yield condition (51). Using the latter as 
the yield condition, but retaining (28) as the plastic potential, we obtain the 
governing equations of the Mohr-Coulomb approximation (MCA). These may be 
regarded as representing a material with a non-associated flow rule. Unlike the basic 
equations, they are strictly hyperbolic, and yield comparable results (figures 10-12, 
and 15-19) with much lower computational times. Further, the characteristics of the 
MCA equations go over smoothly to those of the incompressible equations in the limit 
h + 0, again unlike the basic equations. 

A perturbation method has been used to derive expressions for the asymptotic 
stress, density, and velocity fields. Figures 10, 21, 12, 17 and 16 demonstrate 
convergence of the actual u*, p* ,  and y-fields to the asymptotic fields as f increases. 
In contrast, the y-field for a smooth-walled hopper (figure 11) does not converge to 
the asymptotic y-field. As indicated in $5.3.2, there is reason to believe that the 
radial stress field is unstable to perturbations, for the parameter values used here. 
The asymptotic velocity field is found to be radial to O(h) ,  and the profile of v: (figure 
18) does show a tendency to approach the asymptotic value vz x 0 as 6 increases. The 
profile of v: remains close to the asymptotic field (figure 19); however, this cannot 
be regarded as evidence of convergence, since the initial values a t  f = 0 do not differ 
appreciably. Close to the exit slot, growing inertial terms cause the profiles of all the 
variables to deviate from the asymptotic fields. 

While attempting to integrate the MCA equations downwards from the entry 
shock, computational difficulties were encountered for 6, 2 15'. These arise because 
the C,  characteristics become nearly parallel to the y-axis, and appear to converge, 
suggesting the formation of a shock. The difficulty is overcome here by abandoning 
the initial conditions based on the entry shock, and using alternative initial 
conditions based on the asymptotic fields (Appendix C, sC.2). This ensures that the 
MCA equations can be integrated downwards in all the cases examined. Of course, 
the original problem remains unsolved. It is not clear at present whether the 
behaviour exhibited by the profiles in figure 22 is genuine, or is a reflection of some 
unnatural assumptions made while constructing the entry shock. This cannot be 
ascertained since stress measurements in the interior of bunkers are as yet 
unavailable. 

6.3. The exit region 
Most analyses of hopper flow have assumed that the hopper ends at a traction-free 
surface u* = 0, which spans the exit slot. As noted by Kaza & Jackson (1982a), it is 
difficult to approach this surface from above, owing to a singularity in the 
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momentum balances. Further, with the assumption of incompressible flow in the 
hopper, use of this exit condition leads to  an unrealistic compaction of material on 
the downstream side of the traction-free surface (Kaza & Jackson 1982b). For the 
special case of the smooth-wall, radial gravity problem, it can be shown that this 
conclusion is unaffected by the inclusion of density variation. Hence an alternative 
exit condition, suggested by Kaza & Jackson (1982 b )  is used here. This assumes that 
the exit slot is spanned by a shock, below which the material falls vertically with zero 
frictional stresses. As these conditions are insufficient to determine the bin velocity 
u uniquely, the following additional constraint is imposed in the present work. It is 
assumed that at the edge of the exit slot, the shock is tangential to the characteristic 
which determines the domain of determinacy of the exit slot (figure 5). As discussed 
in 33.6, this prescription determines an upper bound on u for a given exit slot width, 
and, for the parameter values used here, ensures that the shock lies within the 
domain of determinacy of the exit slot everywhere (figure 20). 

Clearly, the condition described above for locating the exit shock along the wall 
has no physical basis. Further, the following problems have been encountered while 
using this condition. For any chosen values of the angle of internal friction q5 and the 
angle of wall friction 6, there exists a critical wall angle 8,,, such that the exit shock 
cannot be constructed for 8, > Ow, (see Prakash 1989). If 8, < Ow,, i t  may be possible 
to construct the shock, as in the case of a rough-walled hopper (55.3.1). However, for 
a smooth-walled hopper with 8, = 30", and gravity directed radially towards its 
vertex, the shock issuing from the edge of the exit slot descends steeply and intersects 
the traction-free surface before reaching the centreline. Thus the shock cannot be 
fully realized in this case, even though 8, < Ow,. 

The ad hoc nature of the exit condition, and the problems associated with i t?  
represent the major shortcoming of the present work. It is hoped that future work 
will focus on the specification of more realistic exit conditions. 

6.4. Discharge rates 
For a rough-walled bunker, discharge rates have been compared with the 
measurements of Nguyen et aE. (1980). In  the compressible case, predicted values are 
well below measurements - the error varies from 38% (of the measured value) at 
8, = 15" to  59 YO at 8, = 32" (figure 23). Note that these figures are based on the use of 
a shock as the exit condition. For illustrative purposes, an alternative exit condition 
u* = 0.0194 has also been used here. The alternative condition leads to discharge 
rates that are within 22 % of the measured value. Thus the discharge rate is sensitive 
to the exit condition used but, unfortunately, a satisfactory condition is lacking. It 
should be emphasized that other aspects of the theory, such as the treatment of the 
transition region, and the qualitative behaviour of solutions in the hopper section, 
are unaffected by the choice of the exit condition. 

The asymptotic fields can be used to  obtain an approximate semi-analytical 
expression for the discharge rate, as explained in $5.3.4. Compared to  the integration 
of the MCA equations, the computational effort required is trivial. Further, the 
difference between approximate and exact (numerical) discharge rates is only about 
9 % (figure 23). 

6.5. Density proJiles 

Comparison with the measurements of Fickie et al. (1989) shows that for the 
parameter values used here, the density profile along the centreline of the hopper is 
qualitatively similar to that observed, but the latter varies more strongly near the 
exit slot (figure 24). However, just below the exit slot there is good agreement 
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between the two, and the error is less than 8% (figure 25) .  The error increases on 
moving downwards, presumably due to the lateral spreading of the particle jet. Since 
the measurements show a smooth density variation across the plane of the exit slot, 
the exit shock is not realized in practice, but its use permits prediction of some of the 
observed features. 

6.6. The incompressible approximation 
The incompressible equations are shown to be a special case of the basic equations, 
obtainable from the latter in the limit h + 0. Results obtained with the compressible 
(MCA) and incompressible equations are qualitatively similar, but the computational 
time is shorter in the latter case. For example, with the asymptotic fields as the initial 
conditions, 6, = 32', and parameter values as in figure 23, integration of the MCA 
requires 26 min while the incompressible approximation requires 16 min. 

The difference between incompressible and compressible discharge rates, expressed 
as a percentage of the latter, is about 10Y0 (figure 23). These results have been 
obtained for a material with h = 0.02 ; i t  is likely that the difference will increase with 
A. As shown in figure 23, the incompressible values are closer to the measurements 
than the compressible values. This is a paradoxical result, as there is strong 
experimental evidence of dilation near the exit slot, suggesting that a compressible 
model should be more realistic. Therefore, it may be necessary to  modify the manner 
in which density variation has been incorporated in the present work, and perhaps, 
also the exit condition. 

The approximate analysis referred to above predicts incompressible discharge 
rates that are within 1 1 %  of exact (numerical) values. Further, it suggests that  
inclusion of density variation causes a reduction in the discharge rate, and this is 
borne out by the results shown in figure 23. 

We are grateful to  Professors Renuka Ravindran and Phoolan Prasad for helpful 
suggestions regarding numerical computations, and to Professor Roy Jackson for 
sending us a copy of the article by Fickie et al. (1989) prior to  publication. 

Appendix A.-f The asymptotic stress field in the bin 
Appendix B.t Evaluation of the parameter n 
Appendix C. Asymptotic fields 

C .  1 .  Governing equations for the asymptotic fields 
The momentum balances (106) and (107) admit a solution of the form ( 1  12) for cr;, 
and for y l .  On substituting (112) into (106) and (107), we get two groups of terms: 
( a )  one involving functions of 0, and ( b )  one involving functions of 0 multiplied by 
In r*. Setting each group of terms to zero leads to ordinary differential equations for 
b,,,  g,,, b,,,  and g12. Similarly, the condition of coaxiality and the equation of 
continuity lead to ordinary differential equations for wll and w,,. 

Boundary conditions for these equations may be specified as follows. The wall 
friction condition (44) is expanded in powers of A to get 

At the centreline, the condition of symmetry implies 

Copies are available on request either from the editor or from the authors. 
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Similarly, (1  13) and ( 1  14) imply 
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h(Ow) = (p,* W , + W , ~ )  dO = 0. 

It is found that the above equations admit an exact solution of the form 

blz = p,* b,;  q12 = 0 ;  wI2 = -p,* w0. (C 4) 

The remaining differential equations for b,,,  q l , ,  and wll, together witJh the 
equation for w,, may be integrated subject to boundary conditions given by (C l a )  
and (C 2), and specified values of two constants P, and P2, where 

P, = w,(ew); P, = w l l ( ~ w ) .  (C 5) 

As mentioned in 55.3.2, we estimate f', and Pz approximately by using the exit 
condition. Details are given below. 

Consider the following procedure. The field variables may be expanded in powcrs 
of A, as in (94), and substituted into the basic equations (23)-(27). Setting terms of 
O(Ao) and of O(A1) to  zero results in two sets of equations. Initial conditions along the 
entry shock, or for that matter along any smooth curve which is not too close to the 
hopper exit, are needed to integrate these equations. Here these initial conditions 
may be taken to be given by the asymptotic fields, generated as described above (see 
also s C . 2 ) .  

The equations of O(Ao) and O(A1) may then be integrated downwards to obtain 
w;,(r*, O), o;,(r*, 0) etc. Substituting these functions into the exit condition (91) gives 

O( A,) : 

O( A') : p: a,* w;, + 2v,* Po* -Po* w:, (.T = 0, (C 7)  

where a, and b, are defined by (92), and all the functions are evaluated a t  the edge 
of the exit slot (r* = r:, 8 = Ow). At this point, u,*, = w;,(Pl), wTl = $,(PI, Pz) ,  and so on. 
Since the values of PI and Pz have been chosen arbitrarily, (C 6) and (C 7) will not be 
satisfied in general. Hence these values must be changed, and the above procedure 
repeated until (C 6) and (C 7 )  hold to within a prescribed tolerance. 

This method is extremely tedious in practice, since an analytical solution is not 
available even for the equations of O(ho). Hence the following alternative method is 
used to estimate the values of f', and Pz. Using the Mohr-Coulomb yield condition 
(51), the asymptotic fields correct to O(A') for p*, w: and w;, and to O(Ao) for i3yli3O 
and au/aO, the r-component of the rnomcntum balance, (24), may be integrated to 
obtain an analytical expression for rf = cr(r*, Ow). as discussed in §C. 3 below. This 
takes the form 

crz = g;,(r*. 8, ; PI) + A&(r*, Ow ; PI, Pz) (C 8) 

where functions a$, and vz, are given by (C 20). Equations (C 5) imply 

Replacing v,* and uT in (C 6) and (C 7)  by CT;, and u;,, respectively, p,* and pT by 
(100) and (110), respectively, and using (C 9), we get 

w , ( ~ , )  = P, = kl(rz)g; 



Flow of granular materials through, a bunker 75 

whcrc 

and the constants A,-A,  are given by (C 21). The values of P, and Pz obtained from 
(C 10) are not exact, since several simplifying assumptions have been used in deriving 

Using the boundary conditions (C l ) ,  (C 2), and (C lo), the relevant differential 
equations are integrated numerically using the STIFF3 routine (Villadsen & 
Michelsen 1978, pp. 321-323) to  obtain b , , (B) ,  gll(8),  wo(8) and w,,(6). This completes 
the determination of the asymptotic fields. 

(C 8)-(C 1 1 ) .  

C .  2. Initial conditions 
In this section, we construct initial conditions based on the asymptotic fields, and 
compare them with those obtained earlier using the entry shock. 

The initial radial velocity v,*, along any smooth curve is obtained by using (C 15b),  
where w0(8) and w11(8) arc estimated by the procedure described in $C. 1 above. 

Regarding the initial stress and density profiles, it turns out that  for typical 
parameter values, the asymptotic fields imply a(r$,OW) > 1 when the expansions 
p* = p t  + Ap: and cr* = cr: +ACT: are used in (29). For example, with the parameter 
values reported by Nguyen et al. (1980), a(r$,Bw) = 1.104. As discussed in 83.4, this 
value is greater than the maximum permissible value a,,, = 1.054. The difficulty is 
circumvented by using the asymptotic fields for cr,* (( 102) and (112)) and a ((101) and 
(log)), and evaluating the initial strcss and density profiles from 

1 

Since the numerical integration is based on the MCA equations, the actual value of 
y(r:, 8,) is replaced by yow ( = g o ( B W ) ) .  This is reasonable since the difference in values 
is <0.2%. 

In the present work, the values along the entry shock of the various fields discussed 
above are used as the initial conditions. When these are compared with the initial 
conditions based on the entry shock, the profilcs of v,* and y are found to  bc 
qualitatively similar, while those of cr* and p* exhibit marked differences. For 
example, in the former case, cr* increases from 1.2 at 8 = 0 to 1.6 at 8 = 8, = 1 5 O ,  
whereas in the latter case, it decreases from 21.2 at  8 = 0 to 15.0 at  8,. (These results 
are based on the parameter values listed in the caption of figure 23.) Perhaps this 
difference in initial conditions is responsible for the two types of behaviour exhibited 
by the solutions of the MCA equations. When the asymptotic fields are used as initial 
conditions, the y-profiles remain monotonic and the integration proceeds without 
undue difficulty. In contrast, when the entry shock is used to generate initial 
conditions, the y-profiles quickly become non-monotonic and exhibit steep fronts 
(figure 22) .  This makes it difficult to integrate the governing equations, as discussed 
in 85.3.3. 
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C. 3. An approximation for the stress along the wall 
The results of numerical integration of the basic equations indicate that the following 
features are approximately true of the solution deep in the hopper section of a steep- 
walled bunker : 

y = y ( B ) :  $ = O ;  r * = a * s i n @ .  (C 13) 

By incorporating these observations and appropriate asymptotic fields into the 
momentum balance (24), it is possible to obtain an estimate for the mean stress along 
the wall f~: = cr*(r*, Ow), as described below. In the incompressible case, Williams 
(1977) has used (C 13) and other assumptions to obtain upper and lower bounds on 
discharge rates from conical hoppers. 

Substituting (C 13) into the r-component of the momentum balance, we get 

av* [ 2 sin # cos 2y ( ti)] 
ar* r* 

[ 1 -sin # cos 2y] - - 1+- fT* 

sin #J sin 2y ar* av* - ___ **r- p * cos8. (C 14) 
P 'r ar* - 

r* a8 

The functions p*> v:? aa*/a6' and a y / M  in (C 14) are approximated by using the 
asymptotic fields, as follows : 

p* = Po* + (P,,(0) +PI2 In r*) A ; (C 15a) 

(C 156) 

(C 15c, d )  

where b, and go are obtained from the radial stress field (Jenike 1964b). To simplify 
the analysis. we have used asymptotic fields correct to O(Ao) for a r * / a B  and ay/aB. 
Computations indicate that this assumption is reasonable, except close to the exit 
slot (Prakash 1989). Though the error involved in the approximations increases with 
6 ,  the magnitudes of aa*/aB and cr* decrease. Hence the error introduced into the 
solution of (C 14) may be less than expected. 

Substituting (C 15) into (C 14), and setting 0 = Ow, we gct a linear ordinary 
differential equation for vf = u*(r*, 8,) : 

where 

$+($)fT: = q(r*) .  

2 sin cos 2yw( 1 + dgo/dB) k =  
(1 -sin @ cos 2y,) 

and 

q5 sin 2y, -p$  cos 0, + -- 
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Equation (C 16) may be integrated to get 

ff: = cTZo + AcT:l’ 
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(C 19) 

where 

(C 20) 
A, P: 2A2 Pl Pz A, P; In r* 
(r*)2 (r*)2 

+ A ,  r* In r* +A, r*. 
(r*)2 

(p1 = + 
Here, 

p; cos Ow - (db,/dO) sin $ sin 2y, ; A , =  Po* A ,  = 
(1 -sin $ cos 2yw) (k - 1) (1 -sin g5 cos2yw) (k+2) ’ 

The integration constant has been dropped in (C 19) since the solution is assumed to 
be independent of initial conditions. 
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